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0 Introduction

0.1 Overview

• motivating example of degenerating quadrics

1 Complex analysis

1.2 Topological spaces

• topological spaces
• continuous maps
• product topology
• quotient topology example: Zariski topology on Cn

• gluing construction
• connected, Hausdorff, and quasi-compact spaces

1.3 Holomorphic functions

• Cauchy-Riemann equations and complex-differentiability [GH94, p. 2]
• for each open subset U ⊆ Cn, a continuously real-differentiable function f : U → C is
holomorphic if it satisfies the following equivalent conditions [GH94, pp. 2-6]:

(1) f is complex differentiable separately in each variable
(2) f satisfies the Cauchy integral formula
(3) f is analytic

1.4 Key theorems on analytic functions

• analytic implicit function theorem
• uniqueness of analytic continuation [Hör90, p. 5]
• maximum modulus principle [Hör90, p. 6]

2 Manifolds and vector bundles

2.5 Real manifolds

• real Ck-manifolds [Voi07a, pp. 25, 39]
• Ck-maps [Voi07a, p. 40]
• smooth partitions of unity for X ⊆ Rn [Lee13, pp. 43, 44]

1



2.6 Complex manifolds

• complex manifold [GH94, p. 14] or [Voi07a, p. 43]
• disks, polydisks, and Cn are pairwise nonisomorphic for n > 1
• Riemann surfaces [GH94, p. 15]
• CPn [GH94, p. 15]
• complex tori [GH94, p. 16]
• smooth, projective algebraic varieties, the Jacobi criterion and the implicit function theorem

2.7 Tangent and cotangent bundles

• vector bundles [Voi07a, pp. 40, 41]
• tangent bundle and vector fields [Voi07a, pp. 41, 42]
• immersions and embeddings
• duals and exterior powers of vector bundles [Voi07a, p. 41]
• cotangent bundle and differential forms [Voi07a, p. 42]
• functoriality of tangent and cotangent bundles

2.8 Tangent bundles over complex manifolds

• holomorphic vector bundle [Voi07a, p. 43]
• holomorphic tangent bundle [GH94, pp. 16, 17] or [Voi07a, pp. 43-46]
• orientability of complex manifolds [GH94, p. 18]
• inverse and implicit function theorems [GH94, pp. 18, 19]

3 Submersions and the Ehresmann fibration theorem

3.9 Constant-rank theorem

• submersions
• constant-rank theorem and local normal form
• fibers of submersions are submanifolds

3.10 Ehresmann fibration lemma

• local and global smooth flows
• integral curves of vector fields
• flows generated by vector fields
• locally trivial fibrations
• proper maps
• Ehresmann fibration lemma for C∞-manifolds [Voi07a, pp. 221, 222]

4 Real and holomorphic Morse theory

4.11 Key results

• statement of the Sard theorem [Hir94, pp. 68-72] or [Mil97, pp. 16-19]
• Hessian
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• nondegenerate critical points [Voi07b, p. 42]
• ordinary double-point singularities [Voi07b, p. 43]
• real Morse lemma [Voi07b, pp. 20-23]
• holomorphic Morse lemma [Voi07b, p. 46]

4.12 Level sets

• level sets of Morse functions [Voi07b, pp. 23-27]

4.13 Vanishing cycles

• vanishing spheres and cycles [Voi07b, p. 47]
• topology of Lefschetz degenerations [Voi07b, pp. 48-51]

5 Lefschetz pencils

5.14 Pencils and the Bertini theorem

• local holomorphic sections of line bundles and locally defined holomorphic functions
• vanishing loci of sections of line bundles and hypersurfaces
• pencil and base locus [Voi07b, p. 43]
• Bertini theorem [GH94, pp. 137, 138]

5.15 Lefschetz pencils

• the hyperplane bundle OPn(1)
• pencils of hyperplane sections [Voi07b, p. 43]
• Lefschetz pencil [Voi07b, p. 43]
• generic pencils of hyperplane sections are Lefschetz pencils [Lam81, pp. 19-22]

6 Singular cohomology

6.16 Singular chains and cochains

• singular chains and homology
• singular cochains and cohomology
• relative homology and cohomology
• Eilenberg-Steenrod axioms
• Mayer-Vietoris sequence

6.17 Ingredients of Poincaré duality

• singular cochains with compact support and cohomology with compact support
• cup product
• cap product
• orientations revisited
• fundamental class
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6.18 Poincaré duality

• Poincaré duality
• application: Gysin map

7 Applications of holomorphic Morse theory

7.19 Blowing up the base locus

• blow-up [Voi07a, pp. 78-80]
• blow-up formula for cohomology [GH94, pp. 473, 474]
• blow-up of the base locus of a Lefschetz pencil [Voi07b, pp. 52-54]

7.20 Lefschetz hyperplane theorem

• Lefschetz hyperplane theorem [Voi07b, pp. 55-57]
• computation of cohomology of smooth hypersurface in CPn except the middle degree
• description of the middle-degree cohomology [Voi07b, pp. 60-62]

7.21 Andreotti-Frankel theorem

• Andreotti-Frankel theorem [Voi07b, pp. 28-30]

8 Monodromy and Picard-Lefschetz theory

8.22 Local Picard-Lefschetz formula

• monodromy representation
• local Picard-Lefschetz formula [Voi07b, pp. 79, 80, 82-84]

8.23 Global Picard-Lefschetz formula

• global Picard-Lefschetz formula [Voi07b, pp. 78, 79, 81, 82]

9 Complex analytic spaces

9.24 Weierstaß preparation and division

• Hartogs extension theorem [GH94, p. 7]
• Weierstraß preparation theorem [GH94, pp. 7, 8]
• Riemann extension theorem [GH94, p. 9]
• Weierstraß division theorem [GH94, pp. 11, 12]

9.25 Chow’s theorem

• Chow’s theorem [Mum95, Ch. 4]
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