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8 Singular (co)homology

8.1 Homology

Let X be a topological space. Its singular homology with coefficients in the ring R is a sequence
of R-modules

H0(X,R), H1(X,R), . . .

with many good properties. We will be mostly interested in the case R = Q, but R = Z,R,C,Fp
are also standard possibilities. Cohomology is used to characterise topological spaces. If the
cohomology groups are different, then so are the spaces. We sketch the construction and state
the main properties. For details, see e.g. [Spa66].

The groupHi(X,R) is defined as the i-th homology group of a complex S∗(X,R) of R-modules.

Definition 8.1.1. (1) The n-th standard simplex ∆n is the convex hull of the standard basis
vectors e0, . . . , en of Rn. For i = 0, . . . , n let ∂i∆n be the face spanned by omitting the vertex i.
We identify it with ∆n−1.

(2) Let X be a topological space A singular n-simplex on X is a continuous map σ : ∆n → X.
A singular chain with coefficients in R is a formal R-linear combination of singular n-simplices.
Let Sn(X,R) be the R-module of singular chains.

(3) We define ∂ : Sn(X,R)→ Sn−1(X,R) on the basis elements by

∂σ =
n∑
i=1

(−1)iσ|∂iσ.

Elements in the kernel of ∂ are called n-cycles, elements in the image n-boundaries.
(4) We define singular homology as homology of the singular chain complex.

Exercise 8.1.2. Check that S∗(X,R) is a complex of free R-modules.
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Example 8.1.3. If X = ? is a single point, then there is only one singular n-simplex, the
constant map. Hence the chain complex is

· · · → R→ · · · → R→ 0

All ∂i map the basis to a basis vector, hence ∂ alternatives betwen 0 or the identity, beginning
with 0 : S1(?,R)→ S1(?,R). Hence

Hn(?,R) =
{
R n = 0,
0 n 6= 0.

Example 8.1.4. The 0-simplex is simply a point. Hence a singular 0-simplex is a point of X
and S0(X,R) is the free module generated by the points of X.

The 1-simplex is an interval [e0, e1]. Then ∂0∆1 = e1 (the end point), ∂1∆1 = e0 (the starting
point). A singular 1-simplex is a path. Its boundary is the formal difference of end point and
starting point. A singular n-chain with coefficients in Z is a formal linear combination of paths.
It is a cycle if every point appears as often as starting point as it appears as end point (counted
with multiplicity). E.g. every closed path is a cycle. Let σ : ∆2 → X be a singular 2-simplex. Let
x0, x1, x2 be the images of the vertices of ∆2. Then ∂0σ is a path from x1 to x2, ∂1σ is a path
from x0 to x2 and ∂2σ is a path from x0 to x1. The sign in the definition of ∂σ is chosen so that
we go around the boundary of ∆2.

Exercise 8.1.5. Let X be path connected, x0 ∈ X. Then H0(X,Z) = Z and H1(X,Z) is the
abelianized fundamental group.

Lemma 8.1.6. Suppose X is contractible. Then Hn(X,R) vanishes for n 6= 0 and H0(X,R) = R.

Proof. We explain the cases n = 0, 1. The general case is done by the same argument, but not as
easy to draw. Let x0 ∈ X be fixed. By assumption, {x0} ⊂ X is a deformation retract.

All elements of S0(X,R) are cycles. Let P ∈ X be a point. There is a path γ : [0, 1] → X
with end points x0 and P , hence [P ]− [x0] = 0 in H0(X,R). All generators of S0(X,R) define
the same homology class. There are no additional relations, hence H0(X,R) ∼= R[x0].

Let σ : ∆1 → X be a singular 1-simplex. We can fill it in to a singular 2-simplex σ̃ : ∆2 → X
forming a a cone above σ with vertex x0. We have

∂σ̃ = σ − [∂1σ, x0] + [∂0σ, x0]

(or some othere distribution of signs) where [Q, x0] denotes the path from Q to x0 along the
contraction. Now let c =

∑
i aiσi be a cycle. InH1(X,R) we may replace σi by [∂1σi, x0]−[∂0σi, x0].

We have ∑
i

ai([∂1σi, x0]− [∂0σi, x0]) = 0

by the cycle condition for c.

If there is not interesting topology, then homology vanishes. More generally:

Lemma 8.1.7. Let f, g : X → Y be homotopy equivalent. Then H∗(f) = H∗(g) : H∗(X,R)→
H∗(Y,R). In particular, homotopy equivalent spaces have the same homology.

Proof. Similar to the special case of a contractible space. We use the homotopy to construct a
chain homotopy between S∗(f) and S∗(g).

The standard method for computing homology is by decomposing a topological space into
smaller pieces. Let X1, X2 ⊂ X be subspaces with X1 ∪X2 = X. We get a short exact sequence
of complexes

0→ S∗(X1 ∩X2, R) (i1,i2)−−−−→ S∗(X1, R)⊕ S∗(X2, R) (a,b)7→a−b−−−−−−→ S∗(X1, R) + S∗(X2, R)→ 0
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with
S∗(X1, R) + S∗(X2, R) ⊂ S∗(X,R).

Definition 8.1.8. The couple (X1, X2) is called excisive if the above map is an isomorphism on
homology.

In this case, we get a long exact homology sequence

· · · → Hn+1(X,R)→ Hn(X1 ∩X2, R)→ Hn(X1, R)⊕Hn(X2, R)→ Hn(X,R)→ . . . .

Theorem 8.1.9 ([Spa66, Ch. 4 Sec. 6 Thm 3]). If X = int(X1) ∪ int(X2), then (X1, X2) is
excisive.

Proof. Omitted. The idea is to subdivide simplices until the pieces lie in X1 or in X2. This is
possible by compactness of σ(∆n).

Example 8.1.10. If U1 ∪ U2 is an open cover of X, then it is excisive.

As an example we compute homology of spheres.

Proposition 8.1.11. Let n ≥ 1. Then

Hi(Sn, R) =
{
R i = 0, n
0 else.

Proof. We argue by induction on n. The space S0 consists of two disjoints points , hence
H0(S0, R) = R2 (corresponding to the two points) and there is no higher homology. The 1-sphere
can be coverd by two half circles intersecting in two intervals. Each of the pieces is contractible,
so the long exact homology sequence gives

0→ H1(S1, R)→ H0(U1 ∩ U2, R)→ H0(U1, R)⊕H0(U2, R)→ H0(S1, R)

so we have to compute the kernel of the map R2 → R2 given by (a, b) 7→ (a − b, a − b). It is
isomorphic to R via c 7→ (c, c).

Now let n > 1. We cover Sn by two copies V1, V2 of Bn intersecing in a band around the
equator. Hence V1 ∩ V2 is homotopy equivalent to Sn−1. The Mayor-Vietoris sequence reads

0→ Hn(Sn, R)→ Hn−1(Sn−1, R)→ 0⊕ 0→ . . .

8.2 Relative homology

There is another type of long exact sequence as well.

Definition 8.2.1. Let X be a topological space, A ⊂ X a subspace. We put

S∗(X,A;R) = S∗(X,R)/S∗(A,R)

and call its homology Hn(X,A;R) relative singular homology of (X,A).

Lemma 8.2.2. There is a long exact sequence

. . . Hn(A,R)→ Hn(X,R)→ Hn(X,A;R) δ−→ Hn−1(A,R)→ . . .
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Proof. By definition we have short exact sequence

0→ S∗(A,R)→ S∗(X,R)→ S∗(X,A;R)→ 0.

Take its long exact sequence.

Example 8.2.3. Let n ≥ 1. Then the long exact homology sequence gives an isomorphism
Hn(Bn, Sn−1, R) → Hn−1(Sn−1, R). As both Bn and Sn−1 are path connected, every class in
S0(Bn, R) is in the image of S0(Sn−1, R) up to an element in the image of S1(Bn, R). Hence

Hi(Bn, Sn−1;R) =
{
R i = n

0 i 6= n

Proposition 8.2.4 (Excision). Let (X,A) be a pair, U ⊂ X open such Ū is contained in the
interior of A. Then

H∗(X − U,A− U ;R) ∼= H∗(X,A;R)

Proof. The pair (X − U,A) is excisive by Theorem 8.1.9 because the

int(X − U) ⊃ X − Ū ⊃ X − intA.

Hence by definition S∗(X − U,R) + S∗(A,R) → S∗(X,R) is an isomorphism on homology.
Moreover,

S∗(X−U,R)+S∗(A,R)/S∗(A,R) ∼= S∗(X−U,R)/S∗(X−U,R)∩S∗(A,R) = S∗(X−U,A−U ;R).

There is a very usefull stronger version.

Theorem 8.2.5 ([Spa66, Ch. 4 Sect. 8 Thm 9]). Let X be a compact Hausdorff space, A ⊂ X
a closed subset which is a deformation retract of one of its closed neighbourhoods in X. Let
Y be Haussdorff, B ⊂ Y closed. Let f : (X,A) → (Y,B) be continuous such that it induces a
homeomorphism X −A→ Y −B. Then f induces an isomorphism on homology.

Proof. The argument uses the deformation and clever excisison for (X,A) and (Y,B).

Example 8.2.6. Let X be a disjoint union of copies of Bn and A its boundary, hence a disjoint
union of Sn−1. Then the assumptions on (X,A) in the theorem are satisfied.

Corollary 8.2.7. Let X be a finite cell complex, Xn its n-skeleton. Suppose that Xn is obtained
from Xn−1 by gluing in m copies of Bn. Then

Hi(Xn, Xn−1, R) =
{
Rm i = n

0 i 6= n

Proof. Apply our upgraded version of excision to (
∐
Bn,

∐
Sn−1)→ (Xn, Xn−1). Then use our

computation of relative homology of balls.

Remark 8.2.8. For n < n′, the inclusion Xn ⊂ Xn′ gives a long exact sequence for homology.
The system of these long exact sequences organize in what is called a spectral sequence. It allows
us to compute homology of X. What we have done in the corollary is to compute its starting
term.

4



The category of topological pairs or simply pairs has as objects pairs (X,A) of a topological
space X and subspace A ⊂ X. Morphisms f : (X,A)→ (Y,B) are continuous maps f : X → Y
such that f(A) ⊂ B. By construction, all Hn(−, R) are functors from the category of pairs
to the category of R-modules and δ is a transformation of functors (X,A) 7→ Hn(X,A;R) →
Hn−1(A,R).

On good spaces, e.g., finite cell complexes, singular homology is uniquely determined by the
Eilenberg-Steenrod axioms:
• Homotopy axiom If f, g : (X,A) → (Y,B) are homotopic, they induce the same map on
relative homology.
• Exactness axiom The long exact sequence for relative homology holds.
• Excision axiom The excision property of Proposition 8.2.4 holds.
• Dimension axiom If X consists only one point, then there is a natural isomorphism

Hi(X) =
{
R i = 0
0 i 6= 0

8.3 Cohomology

Cohomology is dual to homology.

Definition 8.3.1. Let X a topological space, R a ring. We call

S∗(X,R) = HomZ(S∗(X,Z), R) = HomR(S∗(X,R), R)

the singular cochain complex. An singular cochain is a map which assigns to every singular
n-simplex an element of R. Elements of the kernel (image) of the coboundary map are calls
cocycles (coboundaries).

The homology of the singular cochain complex is called singular cohomology

Hn(X,R) = Hn(S∗(X,R)).

Remark 8.3.2. If R is a field, then

Hn(X,R) = Hn(X,R)∨

because −∨ = HomR(−, R) is exact. For R = Z, we get short exact sequences

0→ Ext1(Hn−1(X,Z),Z)→ Hn(X,Z)→ Hom(Hn(X,Z),Z)→ 0.

Example 8.3.3. Let n ≥ 1. Then

H i(Sn, R) =
{
R i = 0, n
0 else

by the same argument as for homology or by passing to duals (works because Hi(Sn, R) is free
over R.

The definition extends to the relative case. The dual of S∗(X,A;R) = S∗(X,R)/S∗(A,R) is
the kernel of S∗(X,R)→ S∗(A,R).

Definition 8.3.4. LetX be a topological space, A ⊂ X a subspace. We define relative cohomology
of (X,A) as

Hn(X,A;R) = Hn(S∗(X,A;R)).
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We get a long exact sequence

· · · → Hn(X,A;R)→ Hn(X,R)→ Hn(A,R)→ Hn+1(X,A;R)→ . . .

Properties like homotopy equivalence, Mayer-Vietoris and excision also hold for singular
cohomology.

Cohomology has a ring structure. It is induces pairing

Sk(X,R)× Sl(X,R)→ Sk+l(X,R)

defined as
(ϕ,ψ) 7→ (σ 7→ ϕ(σ|[e0, . . . , ek])ψ(σ|[ek, . . . , el+k])) .

It is not hard to check ([Hat02, Lemma 3.6] how this formula behaves with respect to the
boundary. From this we get that it induces an R-linear map

∪ : Hk(X,R)×H l(X,R)→ Hk+l(X,R).

We call it cup-product.
Our next aim is the formulation of Poincaré duality. This needs a few constructions. We are

going to follow [Hat02].

Definition 8.3.5. Let S∗c (X,R) be the subcomplex of chains c such that there is a compact
K ⊂ X such that c vanishes on all chains in X −K. We call its cohomology

H i
c(X,R) = H i(S∗c (X,R))

cohomology with compact support.

Remark 8.3.6. • If X is compact, then by definition H i
c(X,R) = H i(X,R).

• Alternatively, we may see cohomology with compact support as

H i
c(X,R) = lim

K
H i(X,X −K;R).

By excision, the right hand side only depends on a neighbourhood of K in X.

There is a pairing for k ≥ l

∩ : Sk(X,R)× Sl(X,R)→ Sk−l(X,R)

defined by
σ ∩ ϕ = ϕ(σ|[e0, . . . , el])σ|[el, . . . , ek].

It is not hard to check ([Hat02, p. 240]) how it behaves under the differential. From this we get
that it induces an R-linear map

Hk(X,R)×H l(X,R)→ Hk−l(X,R).

We call it cap-product.

8.4 Orientations

Consider an R-vector space V of dimension d. An orientation on V is the choice of an equivalence
class of bases where two bases are equivalent (define the same orientation) is the base change
matrix has positive determinant. Altnatively: det(V ) := ΛdV is a one-dimensional vector space.
An orientation is the choice of an R>0-equivalence classes of basis of det(V ). This point of view
makes clear that there are only two possible orientations of V .
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Example 8.4.1. Let V be a C-vector space of dimension 1 with basis v ∈ V . It gives rise to the
R-basis (v, iv). Consider the base change given by multiplication by α = a+ ib ∈ C∗. Then the
base change matrix over R is given by (

a −b
b a

)
.

It has determinant a2 + b2, so it is orientation preserving.

Exercise 8.4.2. Let V be C-vector space. A complex basis (e1, . . . , ed) gives rise to a real basis
(e1, ie1, . . . , ed, ied). Show that any two C-bases define the same real orientation.

Definition 8.4.3. Let X be a smooth manifold. An orientation is the choice of an orientation
of TU for all charts U ⊂ X such that the transition functions are orientation preserving. It is
orientable if an orientation exists.

Exercise 8.4.4. RP 2 is not orientable.

Lemma 8.4.5. Let X be a complex manifold. Then X is orientable as a smooth manifold.

Proof. Let (ϕab)a,b be the transition matrix from one holomorphic coordinate system to the other.
The induced base change maps on tangent spaces are C-linear, hence orientation preserving.

There is also a homological characterisation of orientation. Let X be a smooth manifold of
dimension d. We consider the local homology Hd(X,X − {x}, R) of X at x. By excision, we may
replace X by a ball in a coordinate chart, hence by homotopy equivalence

Hd(X,X − {x};R) ∼= Hd(Bd, Bd − {0}, R) ∼= Hd(Bd, Sd−1;R) ∼= R).

Definition 8.4.6. An R-orientation at x is the choice of a generator of Hd(X,X − {x}, R). An
orientation ofX is a function x 7→ µx assigning to each x ∈ X anR-orientation satisfying the ”local
consistency” condition that each x ∈ X has a neighborhood U ⊂ X homeomorphic to a ball in Rn
and containing a smaller open ball B of finite radius about x such that all the local orientations
µy at points y ∈ B are the images of one generator µB of Hd(X,X −B;R) ∼= Hd(U,U −B;R)
under the natural maps Hd(X,X −B;R)→ Hd(X,X − {y}, R).

Lemma 8.4.7. Let X be an orientable manifold. Then the choice of an orientation induces an
R-orientation for every R.

Proof. It suffices to do the case R = Z. Everything else is induced by base change Hd(X,X −
{x}, R) ∼= Hd(X,X − {d},Z) ⊗ R. In the case R = Z the cohomology group has two possible
generators because Z has the two generators ±1 as Z-module. The choice of an orientation defines
compatible isomorphisms with Hd(Bd, Sd−1,Z), hence an R-orientation.

Theorem 8.4.8 ([Hat02, Thm 3.26]). Let X be a connected compact orientable smooth manifold
of dimension d. Then

Hd(X,R)→ Hd(X,X − {x}, R)

is an isomorphism for all x ∈ X. Moreover, Hn(X,R) vanishes for n > d.

Definition 8.4.9. A fundamental class for X is a class [X] ∈ Hd(X,R) such that [X] defines
an R-orientation for all x.

Actually, the theorem follows from a version in the non-compact case.

Theorem 8.4.10 ([Hat02, Lem. 3.27]). Let X be a connected orientable smooth manifold of
dimension d. Let K ⊂ X be compact. Then there is a unique class in Hd(X,X −K;R) whose
image in Hd(X,X − {x};R) agrees with the orientation for all x ∈ K.

Moreover, Hn(X,X −K;R) = 0 for n > d.
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8.5 Poincaré duality

If X is a smooth compact orientable manifold of dimension d, then cap-product defines a map

[X]∩ : H l(X,R)→ Hd−l(X,R)

for all l ≤ d.

Theorem 8.5.1. Let X be an connected orientable compact manifold, then the composition

[X]∩ : H l(X,R)→ Hd−l(X,R)

is an isomorphism.

Proof. See [Hat02, Thm 3.30].

If R = F is a field, this takes the form

H l(X,F ) ∼= Hd−l(X,F )∨.

This allows us to transport the covariant functoriality of homology to cohomolgy.

Definition 8.5.2. Let Y ⊂ X be an inclusion of connected compact complex manifolds of
complex codimension r. We call the composition

H i(Y,Z) ∼= H2dY −i(Y,Z)→ H2dY −i(X,Z)→ HdX−dY +i(X,Z) = H i+rr(X,Z)

the Gysin map. The image of the standard generator of H0(Y,Z) in H2r(X,Z) is called cycle
class of Y .

We also need the non-compact case.

Lemma 8.5.3. Let K ⊂ X be compact. Then the cap-product induces a pairing

Hn(X,X −K;R)×H l(X,X −K;R)→ Hn−l(X,R).

They are compactible for varying K.

Proof. By definition elements of H l(X,X−K;R) are represented by cochains that vanish outside
of K. Hence they pair to 0 with chains for X −K, so the map factors via S∗(X,R)/S∗(X −
K,R).

Recall that an orientation of X induces orientations on all Hd(X,X −K;R) for all compact
K.

Theorem 8.5.4 (Poincaré duality in the non-compact case, [Hat02, Thm 3.35]). Let X be an
oriented connected smooth manifold of dimension d. Then the duality map

Hn
c (X,R) = lim

K
Hn(X,X −K;R) [ηK ]∩−−−→ Hd−n(X,R)

is an isomorphism.

And finally, the version allowing singularities.

Theorem 8.5.5 (Poincaré duality in the singular case, [Hat02, Thm 3.44]). Let X be an oriented
connected smooth manifold of dimension d. K ⊂ X compact and locally contractible Then there
is an isomorphism

Hn(X,X −K;R)→ Hd−n(K,R).
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