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6 Some elements of Morse theory

6.1 Morse Lemma in the smooth case

Morse theory is a method to understand the topological structure of a manifold by analyzing the
fibres of a smooth map to R.

Example 6.1.1. Let T be a torus, embedded into R3. Let h : T → R be the height function.
There are caps at the top and at the bottom where the fibre is a single circle. In between it is a
union of two circles. There are four exceptional fibres: the top and bottom (a single point each)
and the two point where the fibre looks like a figure 8. These are the point where the rank of dh
changes from 1 to 0. There the rank is 1, we have a local fibration by the Ehresmann lemma. We
are going to see that the simple shape of the fibres is not a coincidence but that can also be read
of from dh.

Definition 6.1.2. Let X be a smooth manifold, f : X → R a smooth function. A point x ∈ X
is called critical point if dfx = 0. A value t ∈ R is called critical value if there is a critical point x
with f(x) = t.

In the non-critical points, we have rk(dfx) = 1 and f is a submersion.
The set of critical points is small:

Theorem 6.1.3 (Sard). Let f : X → Rn be a smooth map of smooth manifolds. Let Σ ⊂ X
be the set of points where dfx is not surjective. Then f(Σ) has measure 0 with respect to the
Lebesgue measure.

Proof. See [Hir94, pp. 68-72], [Mil97, pp. 16-19], or Theorem 10.3.1.

Example 6.1.4. In the torus case, we have four critical points. At the top, the function h is
strictly decreasing, i.e., it has local maximum. At the bottom, it has a local minimum. The two
other critical points are saddle points. The function increases in one direction and decreases in
another. From calculus we know that we can decide this behaviour from considering the second
derivatives or Hesse matrix.
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Definition 6.1.5. Let X be a smooth manifold, f : X → R smooth. Let x ∈ X be a critical
point. We define the bilinear form

Hessx(f) : TxX × TxX → R

by (∂xi , ∂xj ) 7→ ∂2f
∂xj∂xi

(x) for local coordinates x1, . . . , xn near x.

Exercise 6.1.6. Hessx(f) is independent from the choice of local coordinates because x is
critical.

Note that Hessx(f) is symmetric because f is C2. Symmetric bilinear forms are classified.
There is a basis of the vector space such that the representing matrix has the shape−Ir 0 0

0 Is 0
0 0 0

 .
Here r+s is the rank of the quadratic form and r is the index. (This deviates from the terminology
used in some German Linear Algebra textbooks like Fischer, but seems to be the correct standard).

Definition 6.1.7. We say x ∈ X is a non-degenerate critical point if Hessxf is non-degenerate.
The Morse-index indxf is the index of the quadratic form.

Example 6.1.8. Let X = Rn, f(x1, . . . , xn) = −
∑r
i=1 x

2
i +

∑r+s
i=r+1 x

2
i has

df = (−2x1, . . . ,−2xr, 2xr+1, . . . , 2xr+s, 0, . . . , 0).

The critical points are x1 = · · · = xr+s = 0. They are non-degenerate if r + s = n, i.e., there is a
single critical point. The Hesse matrix is already in diagonal form and has index r.

Proposition 6.1.9 (Morse lemma). Let P ∈ X be a non-degenerate critical point of a function
f . Then there is a neighbourhood U of P and coordinates x1, . . . , xn on X such that

f(x) = f(P )−
r∑
i=1

x2
i +

n∑
i=r+1

x2
i

with r = indP f .

Corollary 6.1.10. If P is a non-degenerate critical point, then it is an isolated critical point,
i.e., there is a neighbourhood U of P such that P is the only critical point of f in U .

Proof. Compute df in the local coordinates of the Morse lemma.

Proof of the Morse lemma. Without loss of generality X ⊂ Rn, P = 0. Let x1, . . . , xn be the
standard coordinates on Rn. There are smooth functions gij on a neighbourhood of 0 such that

f(x1, . . . , xn) = f(0) +
n∑
i=1

(∂if)(0)xi +
∑
i,j

xixjgij(x1, . . . , xn)

(beginning of the Taylor expansion). Without loss of generality f(0) = 0. By assumption 0 is
critical, hence

f(x1, . . . , xn) =
∑
i,j

xixjgij(x1, . . . , xn).

Without loss of generality, the matrix (gij) is symmetric (replace gij by 1/2(gij + gji)). We think
of it as a quadratic form that we want to diagonalise. We have

∂f

∂xk
=
∑
j

xjgkj +
∑
i

xigik +
∑
ij

xixj
∂gij
∂xk

= 2
∑
j

xjgkj +
∑
i,j

xixj
∂gij
∂xk
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and hence
∂2f

∂xl∂xk
= 2gkl +

∑
j

xj
∂gkj
∂xl

+ 2
∑
j

xj
∂glj
∂xk

+
∑
i,j

xixj
∂2gij
∂xl∂xk

and evaluating at 0:
∂2f

∂xl∂xk
= 2gkl(0).

They form a non-degenerate matrix. Let A ∈ Gln(R) be the matrix that transforms it into normal
form,

At (gij)A =
(
−Ir 0

0 In−r

)
.

We make a linear change of coordinates x′ = A−1x. In the new coordinates

f(x′) = x′
t
At (gij)Ax′

hence the new functions g′ = AtgA satisfy

(
g′ij(0)

)
=
(
−Ir 0

0 In−r

)
.

We replace x1, . . . , xn by x′1, . . . , x′n and drop the primes. The next step is a non-linear change of
coordinates to remove the gij completely. We have to complete the squares.

We have g11(0) = ±1. We consider the case g11(0) = 1 first. Hence the function is positive in
some neighbourhood of 0. We replace X by this neighbourhood. We put

y1 = √g11x1 +√g11
−1g12x2 + · · ·+√g11

−1g1nxn

and hence
y2

1 = g11x
2
1 + 2g12x1x2 + · · ·+ 2g1ng1nx1xn + . . .

In the new coordinates y1, x2, . . . , xn we have

f = y2
1 +

∑
i,j>1

xixjhij

with new functions hij . By induction, we find new coordinates y2, . . . , yn such that f has the
desired description.

If g11(0) = −1, the function is negative on some neighbourhood of 0. We replace X by this
neighbourhood. This time we use

y1 =
√
−g11x1 +

√
−g11

−1
g12x2 + . . .

√
−g11g1nxn

with
−y2

1 = g11x
2
1 + 2g12x1x2 + . . .

The rest of the argument is as in the positive case.

6.2 Holomorphic Morse lemma

We repeat the theory on the holomorphic setting.

Definition 6.2.1. Let X be a complex manifold, f : X → C a holomorphic function. A point
x ∈ X is called critical point if dfx = 0. A value t ∈ R is called critical value if there is a critical
point x with f(x) = t.
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Remark 6.2.2. In the non-critical points, we have rkC(dfx) = 1 and f is a submersion. If,
in addition, f is proper, then we get a locally trivial fibration of smooth manifolds over the
complement of the critical values.

Definition 6.2.3. Let X be a complex manifold, f : X → C holomorphic. Let x ∈ X be a
critical point. We define the bilinear form

Hessx(f) : TxX × TxX → C

by (∂zi , ∂zj ) 7→ ∂2f
∂zj∂zi

(x) for local holomorphic coordinates z1, . . . , zn near x.

As in the real case, Hessx(f) is independent from the choice of local coordinates because x is
critical.

Note that again Hessx(f) is symmetric. As a bilinear form over a complex vector space, it
can be simplified: There is a basis of the vector space such that the representing matrix has the
shape (

Is 0
0 0

)
.

The symmetric bilinear form is non-degenerate if and only if s = n, or equivalently, the matrix of
the bilinear form is invertible.

Definition 6.2.4. We say x ∈ X is a non-degenerate critical point if Hessxf is non-degenerate.
In this case, we say that the fibre Xf(x) has an ordinary double point.

The fibres with ordinary double points are singular (not manifolds), but the singularities are
of the simplest possible type.

Example 6.2.5. Let X = Cn, f(z1, . . . , zn) =
∑s
i=1 z

2
i has

df = (2z1, . . . , 2zs, 0, . . . , 0).

The critical points are z1 = · · · = zs = 0. They are non-degenerate if s = n, i.e., there is a single
critical point. The Hesse matrix is already in diagonal form. The fibre

X0 =
{
z ∈ Cn|

s∑
i=1

z2
i = 0

}

has an ordinary double point in 0.

Proposition 6.2.6 (Morse lemma). Let P ∈ X be a non-degenerate critical point of a holomor-
phic function f . Then there is a neighbourhood U of P and holomorphic coordinates z1, . . . , zn
on X such that

f(x) = f(P )−
n∑
i=1

z2
i .

Proof. Same argument as in the real case. At the point where we take square roots, note that a
function g with g(0) 6= 0 admits a square root on a small ball around 0.

Corollary 6.2.7. If P is a non-degenerate critical point, then it is an isolated critical point,
i.e., there is a neighbourhood U of P such that P is the only critical point of f in U .

Proof. Compute df in the local coordinates of the Morse lemma.
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6.3 Topology of level sets

Let f : X → R be smooth. Our aim is to understand X≤M = f−1((−∞,M ]) for M ∈ R or more
generally X[M1,M2] for the preimage of [M1,M2] for M1 ≤ M2. We write XM = X[M,M ]. They
are called level sets.

Lemma 6.3.1. If M is not a critical value of f , then X≤M is a manifold with boundary, i.e.,
every point has a neighbourhood homeomorphic to an open subset of R≥0 × Rn−1. The boundary
XM is an (n− 1)-dimensional manifold.

Proof. The preimage of (−∞,M) is open in X, hence a manifold. Consider a point x0 on XM .
By assumption, f is a submersive near x0. By the constant rank theorem, this means that there
is a coordinate chart at x0 such that the map f becomes the projection to the first coordinate.
This is the coordinate for the manifold with boundary X≤M .

Definition 6.3.2. Let X be a smooth manifold. A function f : X → R is called Morse function
if it is exhaustive, i.e., for every M ∈ R the closed subset X≤M is compact, and every critical
point is non-degenerate.

In particular, f is proper. Hence if [M1,M2] does not contain any critical values, then f
defines a locally trivial fibration. Indeed, it is even trivial:

X[M1,M2] ∼= [M1,M2]×K

for some compact fibre K.
The main result of Morse theory is the following:

Theorem 6.3.3. Let X be a smooth manifold, f : X → R a Morse function, M ∈ R. Then
X(−∞,M) has the homotopy type of a finite cell complex.

Actually, the theory also gives very precise information how the topological space looks like.
But let us first review the notions from topology used in the theorem.

Definition 6.3.4. A cell of dimension n is a topological space B homeomorphic to a closed ball
of radius 1.

A topological space X has the structure of finite cell complex if there is a sequence of closed
subspaces X0 ⊂ X1 · · · ⊂ Xn = X such that

(1) X0 is a finite set of isolated points (0-cells);
(2) for each i, there is finite set ∆1, . . . , Bk(i) of i-cells, continuous maps fj : ∂Bj → Xi−1

and a homeomorphism

Xi =
(
Xi−1 q

k(i)∐
j=1

Bj

)
/ ∼

where ∼ is the equivalence relation generated by x ∼ fj(x) for all x ∈ ∂Bj .
The subspace Xi is called the i-skeleton.

Example 6.3.5. The sphere Sn has a structure of finite cell complex with two cells. We put
X0 = ∗ a single point, X0 = X1 = · · · = Xn−1 and glue in a single n-cell by mapping all its
boundary to ∗.

Exercise 6.3.6. Let X, Y be finite cell complexes. Show that X × Y also has a structure of
finite cell complex.

Definition 6.3.7. LetX,Y be topological spaces, A ⊂ X closed. Let f, g : X → Y be continuous.
A homotopy from f to g relative to A is a continuous map

H : X × [0, 1]→ Y

5



such that
(1) H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X,
(2) H(a, t) = H(a, 0) for all a ∈ A, t ∈ [0, 1].

If there is a homotopy from f to g, we say that f and g are homotopic.

We often write Ht(x) instead of H(x, t).

Example 6.3.8. The fundamental group Y with base point y0 is the set of homotopy classes
of maps γ : [0, 1]→ Y with γ(0) = γ(1) = y0 with respect to homotopies relative to A = {0, 1}.
Each intermediate path of the homotopy is itself a closed path from y0 to y0.

Definition 6.3.9. Let X,Y be topological space. A continuous map f : X → Y is a homotopy
equivalence if there is a continuous map g : Y → X such that g ◦ f ∼ idX and f ◦ g ∼ idY .

We will have a special case:

Definition 6.3.10. Let X be a topological space, A ⊂ X a closed subset, i : A → X the
inclusion. We say that A is a deformation retraction of X if there is a continuous map r : X → A
with r ◦ i = r|A = idA and a homotopy relative to A from i ◦ r to idX .

Example 6.3.11. The origin is a deformation retract of Rn via the deformation H(x, t) = tx
(t ∈ [0, 1], x ∈ Rn).

Example 6.3.12. S1 is a deformation retract of C∗ via the deformation

H(reiϕ, t) = (r + (1− r)t)eiϕ

Example 6.3.13. Let f : X → Rn be a trivial fibration. Then f−1(0) is a deformation retract
of X.

Proposition 6.3.14. Let f : X → R be a Morse function, λ a critical value. Let λ < M such
that f does not have a critical value in (λ,M ]. Then for all 0 < ε < M − λ, the level set X≤λ+ε
is a deformation retract of X≤M .

Proof. By the Ehresmann theorem applied to the restriction of f to (an open neighbourhood of)
X[λ+ε,M ] there is a diffeomorphism

X[λ+ε,M ] ∼= Xλ+ε × [λ+ ε,M ]

The retraction [λ + ε,M ] to {λ + ε} induces the deformation on the level set. It glues to the
identity on X≤λ+ε.

In order to understand what happens at a critical point, we consider the case X = R2,
f : X → R given by (x1, x1) 7→ −x2

1 + x2
2. The critical value is 0. Its preimage is

f−1(0) = {(x1, x2)|(x2 − x1)(x2 + x1) = 0},

so the union of the diagonal lines. The preimage of a ∈ R is the hyperbola

f−1(a) = {(x1, x2)|(x2 − x1)(x2 + x1) = a}.

For a < 0 is lies to the left and right of diagonal cross. For a > 0 is lies above and below it. Up
to deformation, we get from X≤−ε to X≤ε, by gluing in [−

√
ε,
√
ε]× {0}.

More generally: Let X = Rn, f : Rn → R the standard function of index r, i.e.,

f(x1, . . . , xn) = −
r∑
i=1

x2
i +

n∑
i=r+1

x2
i .
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Fix ε > 0. The level set Xε has two connected components, both diffeomorphic to Rn−1. We
want to compare X≤−ε and X≤ε. The interval is replaced by the r-cell

Br(ε) :=
{

(x1, . . . , xn)|
r∑
i=1

x2
i ≤ ε, xr+1 = · · · = xn = 0

}
.

It is a ball of radius
√
ε. It is obviously contained in X≤ε. Its intersection with B≤−ε are the

points {
(x1, . . . , xr, 0, . . . , 0|)|

r∑
i=1

x2
i ≤ ε,−

r∑
i=1

x2
i ≤ −ε

}
= ∂Br(ε) =: Sr(ε).

It is an r-sphere of radius
√
ε.

Lemma 6.3.15. With the notation above, X≤ε deformation retracts onto X≤−ε ∪Br(ε).

Proof. We need to define a deformation from X≤ε to the subset. Its existence is obvious from
looking at the picture. Both Voisin (see [Voi07, Proposition 1.12]) and Milnor (see [Mil63, p. 15-19],
wonderful pictures) write them down explicit.

We use a third method, inspired by the differential geometric approach to Morse theory. Let
G : Rn → Rn be the negative gradient vector field of f , i.e.,

G(x1, . . . , xn) = −(∂1f, . . . , ∂nf) = (2x1, . . . , 2xr,−2xr+1, . . . ,−2xn).

Let Φ be its flow. Going along the flow-lines reduces the value of f . They follow the direction
of steepest decent. Note that 0 is a fixed point of the flow. Most flow lines tend to infinity for
t→ ±∞. In particular, they connect a point in the level set Xε with a point in X−ε after a finite
amount of time. Actually, this happens more quickly if we take x further away from the origin.
There are two exceptional sets: on {(x1, . . . , xr, 0, . . . , 0)} the point 0 is repelling, it is the limit
for t → −∞. On {(0, . . . , 0, xr+1, . . . , xn)} it is attracting, it is the limit for t → ∞. Note that
the repelling set (also called unstable manifold) is precisely, where we find out cell Br(ε).

Hence we proceed as follows: We follow the flow Φ for a finite amount of time, until points
on X≤ε with |x| > R for some R have reached X≤−ε. We then move points along the flow

(x, t) 7→ (x1, . . . , xr, txr+1, . . . , txn).

In both cases we leave points fixed once they have reached X≤−ε ∪Br(ε).

Theorem 6.3.16. Let X be a smooth manifold, f : X → R a Morse function, λ ∈ R a critical
value. Let x1, . . . , xm be the critical points for this value, r1, . . . , rm their Morse indices. The
there is ε > 0 (small enough) such that there is a deformation retraction of X≤λ+ε to the union
of X≤λ+ε with cells Br1 , . . . , Brm of dimensions r1, . . . , rm glued to X≤λ−ε along their boundaries
such these these boundaries remain disjoint.

Proof. The idea is to use the negative gradient flow away from balls around the singularities.
The values ε can be chosen small enough such that these exceptional balls are disjoint. Within
the exceptional ball we use the deformation constructed in the lemma.

There is a problem with this approach: the gradient depends on the choice of coordinates.
The invariant object is

df =
∑
i

∂ifdxi.

It is a differential form rather than a tangent vector. In the proof of the lemma we were making
an explicit identification by identifying the basis ∂i of TRn with the basis dxi of T ∗Rn. More
abstractly, this means that we have chosen a scalar product. Globally, such an object is called
a Riemannian metric. They exist by partition of unity and can be chosen to coincide with our
chosen scalar product on our disjoint balls. Hence the proof is actually complete.
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6.4 Vanishing spheres

We can apply these considerations to a complex manifold X and a holomorphic function f . We
write g = <(f). If x is non-critical for f , then it is also non-critical for g because < : C→ R is a
submersion.

Lemma 6.4.1. Let X be a complex manifold of dimension n, f : X → C holomorphic. Let
x ∈ X be a non-degenerate critical point for f . Then x is also a non-degenerate critical point for
g = <(f) of Morse index n.

Proof. We use the local coordinates of the holomorphic Morse lemma. Then

f(z1, . . . , zn) =
n∑
j=1

z2
j .

With zj = xj + iyj this implies

g(x1, y1, . . . , xn, yn) =
n∑
j=1

(x2
j − y2

j ).

This is the normal form for the smooth Morse lemma and we read off the Morse index n.

There are no holomorphic maps f : X → C such that <(f) is exhaustive. Instead we
concentrate on the local behaviour.

Let f : X → V be proper holomorphic, V ⊂ C an open neighbourhood of 0. We put ∆ ⊂ V
a (small) open disk around 0 such that ∆̄ ⊂ V , ∆∗ = ∆− {0} the pointed disk.

Theorem 6.4.2. Let X → V ⊂ C be holomorphic and proper, x0 with f(0) an ordinary double
point and all other points non-critical. Let t ∈ ∆∗. Then X∆ = f−1∆ deformation retracts to
Xt ∪Bn

t where Bn
t is a (real) ball of dimension n glued to Xt along the vanishing sphere Snt .

The idea is to show that
• X∆ retracts to X∆,g≤ε
• X∆,g≤−ε retracts to X−ε
• Morse theory tells us that we get from one to the other by gluing in an n-cell (because the
Morse index is n)
• Any two fibres Xt are diffeomorphic.
We first concentrate on the situation near x0. Hence we consider an open U ⊂ X homeomorphic

to a ball in Cn and local coordinates z1, . . . , zn on U centered at x0 such that

f(z1, . . . , zn) =
n∑
i=1

z2
i .

For t = seiθ ∈ ∆∗ = ∆ r {0}, the fibre Ut of f contains the sphere

Sn−1
t =

{
z ∈ U |zi =

√
se

1
2 θxi, xi ∈ R,

n∑
i=1

x2
i = 1

}
.

The set {z ∈ U ||f(x)| ≤ s} contains the ball

Bn
t =

{
z ∈ U |zi =

√
se

1
2 θxi, xi ∈ R,

n∑
i=1

x2
i ≤ 1

}
.

If U is big compared to ∆, then these sets do not depend on U .
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Definition 6.4.3. Sn−1
t is called vanishing sphere of the family (Ut)t∈∆ and Unt is called cone

of the vanishing sphere. Its boundary is Sn−1
t .

Remark 6.4.4. It t tends to 0, then the vanishing sphere tends to a single point, 0. Note that
the sphere depends on the choice of coordinates. Once we have introduced homology, we will
see that the homology class of the vanishing sphere, the vanishing cycle, is independent of this
choice of coordinates (up to sign depending on the orientation).

Example 6.4.5. If t = −ε, then s = ε, θ = π

Bn
−ε =

z ∈ U |zi =
√
εixi, xi ∈ R,

n∑
j=1

x2
i ≤ 1

 .
In the notation of the last section this is the ball Bn(ε) with respect to the function g = <(f).
Analogously, Sn−1

−ε = Sn−1(ε).

Proof of Theorem 6.4.2. We consider the holomorphic proper map f : X → V and restrict to
X∆ = f−1∆. Without loss of generality, t = −ε. We use an Ehresmann flow with respect to g.
It exists as long a we avoid 0. It induces a deformation retract from X∆,g≤−ε to X∆,g=−ε and
from X∆ to X∆,g≤ε. We use the deformation from the smooth case from X∆,g≤ε to the gluing of
X∆,g=−ε to Bn

ε via the vanishing sphere.
The level set X∆,g=−ε is the preimage under f of

∆−ε = {z ∈ ∆|<(z) = −ε} = {z ∈ ∆|z = −ε+ iy}.

This is an interval of length depending on the size of ∆. Hence we can use the Ehresmann flow
to define a deformation retract of X∆,g=−ε to the fibre X−ε.
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