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5 Topology of proper submersions

5.1 Constant-rank theorem
Much of this section follows the exposition of [Dunl8, §4.3].

Proposition 5.1.1 (Local normal form for submersions). Let f: X — R"™ be a submersion of
smooth manifolds, let p € X, and let m == dim(X). There exists a smooth chart (U, p) at p such
that

(foe Dty tm) = (t1,.. . tn)
for each (t1,...,tm) € p(U).

Proof. If (U, ) is a smooth chart at p, then we may replace X by U and f by fo ! at any

point in the proof. In particular, we may assume without loss of generality that X C R" is an
open subspace.

Let fi,..., fn: X — R denote the component functions of f. By Remark 4.5.5, we have
m >n. As f is a submersion, the Jacobian matrix of f has rank n at p. Replacing (X, f) by a
suitable (U, f o ¢~1) once more, we may assume without loss of generality that the submatrix

(0fk/0%(P))1<p o<n 18 invertible.
Consider the smooth map ¢: X — R™ given by

o(t) = (fr(t), ..., fult),tnsls - tm)

for each t = (t1,...,tm) € X. The Jacobian matrix of ¢ at p with respect to the standard bases
is given by
0
(Tg(p))lgk,fgn *
0 Lp—n.

In particular, dg, is an R-linear isomorphism. By the inverse function theorem [add reference],
@ is a diffeomorphism from an open neighborhood p € U C X to an open neighborhood
o(p) € p(U) C R™. For each t € p(U), we have

(foe ™ H)(t) = (t1,...,tn).



Indeed, we may write each ¢t € p(U) as ¢(u) for some u € U, and we have

(tlw . 'atn) = (901(“)7 cee v‘;on(u)) = (fl(u)v s 7fn(u)) = f(u) = f(@il(u))a

where pr: X — R is the kth component function of ¢ for 1 < k < n. The pair (U, ¢) is therefore
the required smooth chart. O
Lemma 5.1.2. Consider the following data and hypotheses:

e X CR™ and Y C R"™ are open neighborhoods of the origins;
o f: X =Y is a smooth map of constant rank r € Z>q;

e f(0)=0;

e the Jacobian matriz of f at p with respect to the standard bases is of the form

A B
0 D
with A an invertible r X v matriz.
There exist smooth charts (U, ) at p € X and (V,¢) at ¢ € R™ such that

(Yo foe N(ty,... tm)=(t,...,1,,0,...,0)
for each (t1,...,tm) € p(U) CR™.

Proof. Recall that r = rk,(f) < min(m,n) by Remark 4.5.5. Let fi,..., f,: X — R denote
the component functions of f. By hypothesis, the matrix A = (9 fx/02,(0)), <y, o<, is invertible.
Consider the smooth map ¢: X — R™ given by

o(t) = (fi(t), s fr(E)strga, oy tm)

for each t = (t1,...,tm) € X. Note that ¢(0) = 0 and that the Jacobian matrix of ¢ at 0 with
respect to the standard bases is given by

(%(0))19&,59 *
0 L.

In particular, dpg is an R-linear isomorphism. By the inverse function theorem [add reference],
¢ is a diffeomorphism on an open neighborhood 0 € U C X. For each t € ¢(U), we have

(f 0 (p_l)(t) = (tla s atmgr—i—l(t)? s ,gn(t)),

where gi = fr 0 ¢! for each r < k < n. Indeed, we may write each t € ¢(U) as p(u) for some
u € U, and we have

(t1, ooty fraa (071 (1), ful (D))
= (fu(w), .., fr(@), frra(p™ (W), .-, Fule™ (0 ())))
= (f1(w), .- fu(u))
= (file™ 1), fale™ (D))
= f(e~'(®)).

The Jacobian matrix of fop~!

at each t € ¢(U) is given by

I, 0
{* (gg’;(t))r<k<n] ’

r<t<m



By [add reference], d(f o ¢~ ') = df odp~!. As p~! is a diffeomorphism on ¢(U), the rank of

f o !is equal to the rank of f, i.e., f o' is of rank 7 on ¢(U). The form of our matrix

representation of d(f o ¢ ') therefore implies that dgy/0x, = 0 for each r < k < n and each

r < £ < m. In other words, the functions g; with » < k < n are independent of t,41,...,tn.
Let a: R™ — R™ be the smooth map given by

a(tl,...,tn):(tl,...,tr,O,...,O).

For each r < k < n, we therefore have a well-defined smooth map hy: a~!(p(U)) — R™ given
by hy, = g o a. Consider the smooth map p: a~(¢(U)) — R" given by

p(t) = (t17 o 7t7’7t7"+1 + h’/‘-i—l(t)? st 7tn + hn(t))

We have p(0) = 0 and the R-linear map dpg is represented by the matrix

I, 0
*  Lnp|”
Thus, p is a diffeomorphism on an open neighborhood 0 € V' C a~!(¢(U)). Let v: p(V) = V
denote the smooth map inverse to p: V- — p(V).
To complete the proof, choose an open neighborhood 0 € U’ C ((U) such that (f o o~ 1)(U’) C

V. The smooth charts (o~ 1(U’), ¢) and (V, 1)) satisfy the required condition: for each t € U’, we
have

(o foe ™)) = (plv)  (tr, - try grsa(t), . gn(t))
= (plv) " (try oo tes gt (F1y oty 0,0, 0), s B (o8, 0,02, 0))
= (t1,...,t,,0,...,0),

as required. O

Theorem 5.1.3 (Constant-rank). Consider the following data and hypotheses:
o f: X =Y is a smooth map of smooth manifolds of respective dimensions m and n;
ez X andy:= f(x) €Y, and
e f is of constant rank r.

There exist smooth charts (U, ) at x and (V,) at y such that

(Yofoe ™ )tr,....,tm) = (t1,...,t,,0,...,0)
for each t = (t1,...,tm) € (U) C R™.

Proof. The assertion is local with respect to X and Y. Replacing X and Y by the codomains of
smooth charts at x and y, respectively, we may assume without loss of generality that X C R™
and Y C R"™ are open subspaces. Suitably modifying our charts, we may furthermore assume
that x =0 and y = 0.

By hypothesis, d fy is of rank r. The matrix of d fy with respect to the standard bases therefore
contains an invertible r X r submatrix. Modifying our charts once more, we may assume that the
Jacobian matrix satisfies the hypotheses of Lemma 5.1.2, and the claim follows. O

Example 5.1.4. Each submersion f: X — Y of smooth manifolds is of constant rank: indeed,
df, is surjective for each x, hence of rank dim(Y"). In this case, Theorem 5.1.3 tells us that,
locally on X and Y, the map f looks like the standard projection (z,y) — z: R™ x R" — R™.

Proposition 5.1.5. Each submersion f: X — 'Y of smooth manifolds is an open map.



Proof. By Example 5.1.4, there exist an open cover {V,},c4 of Y and, for each a € A, an open
cover {Uyp} sep, such that the map f: Uss — Vp is homeomorphic to a standard projection
R™ x R™ — R". Each such standard projection is open. As open subsets are stable under
arbitrary unions, the claim follows. O

Example 5.1.6. Each immersion f: X — Y of smooth manifolds is of constant rank: indeed,
dfy is injective for each x, hence of rank dim(X). In this case, Theorem 5.1.3 tells us that, locally
on X and Y, the map f looks like the standard inclusion = — (z,0): R™ — R™ x R"™.

Definition 5.1.7. Let f: X — Y be a smooth map of smooth manifolds.
(1) Let x € X. We say that x is a regular point with respect to f if dfy is surjective. We say
that = is a critical point with respect to f if it is not regular.

(2) Let y € Y. We say that y is a regular value of f if each x € f~1(y) is a regular point. In
particular, if f~!(y) = @, then y is a regular value. We say that y is a critical value of f if it is
not a regular value.

Corollary 5.1.8. Let f: X =Y be a smooth map of smooth manifolds of respective dimensions
m and n, and let y €Y be a reqular value such that f~'(y) # @. The preimage f~1(y) admits a
smooth structure of dimension m — n such that the inclusion f~'(y) < X is an embedding.

5.2 Flows and vector fields
Much of this section follows the exposition of [Dunl8, Chapter 7] and [Leel3, Chapter 9].

Flows

Definition 5.2.1. Let X be a smooth manifold. A global flow on X is a smooth map ®: Rx X —
X such that:

e for each p € X, ®(0,p) = p; and

e for ecach p € X, for each s,t € R, ®(t, P(s,p)) = ®(t + s,p).

Example 5.2.2. The function L: R x R — R given by L(s,t) := s+t is a flow on the smooth
manifold R.

Example 5.2.3. For each t € R, let A(t) denote the 2 x 2 matrix

[cos(t) sin(t)] .

sin(t)  cos(t)

The function ®: R x R? — R? given by ®(¢,v) = A(t)v is a global flow on R2.

Remark 5.2.4. Let X be a smooth manifold. The datum of a global flow on X is equivalent
to that of a group morphism «: : R — Diff(X), where Diff(X) is the group of diffecomorphisms
p: X — X with respect to composition.

Definition 5.2.5. Let X be a smooth manifold. A flow domain of X is a subset D C R x X
such that, for each p € X, the subset D, .= {t € R | (t,p) € D} C R is an open interval
containing 0.

Definition 5.2.6. Let X be a smooth manifold. A local flow on X is a smooth map ®: D — X
such that:
e D CR x X is a flow domain;
e for each p € X, ®(0,p) = p; and
e for each p € X, for each s € D), and each t € Dg
O(t 4+ s,p).

sp) if t+ 5 € Dy, then O(t,d(s,p)) =



The local flow ® is mazimal if there is no local flow ¥: E — X such that D C F and ¥|p = .
Remark 5.2.7. In Example 5.2.17, we will see why the generality of local flows is needed.

Definition 5.2.8. Let X be a smooth manifold and let ®: D — X be a local flow. The wvelocity
field %—?: X — TX is the vector field given by

) =1t - 2(t,p).

This is well defined since this tangent vector only depends on the values of the curve ®(—,p) in
a small neighborhood of p.

Exercise 5.2.9. Let X be a smooth manifold and let ®: D — X be a local flow. Show that the
velocity field 0®/0t: X — T'X is a smooth vector field.

Definition 5.2.10. Let X be a smooth manifold and let ®: D — X be a local flow. For each
p € X, the flow line of ® through p is the path ®,: D, — X given by ®,(t) = ®(¢,p).

Integral curves

Definition 5.2.11. Let a,b € R, let X be a smooth manifold, and let ~v: (a,b) — X be a
smooth map. The velocity curve v/0t: (a,b) — TX of ~y is the map given by

0y
E.s%[t%y(s—l—t)}.

Exercise 5.2.12. With the notation and hypotheses of Definition 5.2.11, show that 0+/0t is a
smooth map.

Definition 5.2.13. Let X be a smooth manifold, let £: X — T'X be a smooth vector field, and
let p € X. An integral curve of & starting at p is a smooth map v: J — X such that:

e J C R is an open interval containing 0;

* 7(0) = p; and

e for each s € J, %(s) =&(v(s)).

Example 5.2.14. Consider the vector field 9/0z on R? and the point p = (a,b) € R2. The
map v: R — R? given by 7(t) = (t + a,b) is an integral curve of 9/9x through p.

Example 5.2.15. Consider the vector field £ = :Ua% + yg—y on R?. Finding an integral curve
v: R — R? of ¢ starting at p = (a,b) amounts to solving an initial-value problem:

V() =¢0r®),  (0) = (a,b).
Writing v(t) = (z(t), y()), this system takes the form

0 0

9 ‘ 0 0
O ly(t) 0y Iy(t)

! -
7 () D 11

= z(t)

which admits the unique solution y(t) = (aexp(t), bexp(t)).



Vector flows

Remark 5.2.16. Let X be a smooth manifold, let ® be a local flow, and let 9®/0t be the
associated velocity field. An integral curve of 0®/0t starting at p € X is a flow line &, of ®.

Unless X is quasi-compact, there may exist smooth vector fields on X that do not arise as
velocity fields of global flows on X as the following example illustrates.

Example 5.2.17. Let X = Rcgx R, let { = 0/0x, and let p = (a,b) € X. As in Example 5.2.14,
the integral curve of £ starting at p is given by v(t) = (¢t + a, b). However, ~(t) is only defined for
t < —a. If we had £ = 0®/0t, then the integral curve of ¢ starting at p would be the flow line
®,, and would therefore be defined at each time ¢t € R.

Theorem 5.2.18 (Existence, uniqueness, smoothness). Let U C R"™ be an open subset, let
&: U — R"™ be a smooth map, and let (tg,xg) € RxU. There exist e € R~g, an open neighborhood
xo € Up C U, and a smooth map ®: (tg — e,tg +¢€) x Uy — U such that, for each x € Uy,
~(t) == ®(t, ) is the unique solution to

V() =E(v(),  A(to) =2
on (to —e,to + ¢€).
Proof. See [Leel3, Appendix D]. O

Lemma 5.2.19. Let X be a smooth manifold, let £: X — T X be a smooth vector field, and let
Y0,71: J = X be integral curves to & defined on an open interval J C R containing 0. If there
exists to € J such that vo(to) = v1(to), then vo = 1.

Proof. Let S :== {t € J | v(t) = 71(t)} and let tp € S. We claim that S = J. Let ¢: J —
X x X be the continuous map induced by 7y and +; by the universal property of the product
(Proposition 1.2.1). Note that S = ¢~ 1(Ax), where Ax C X x X is the diagonal. As X is a
manifold, it is Hausdorff, so Ax is closed by Proposition 1.3.17, so S is closed in .J.

For each t; € S, v and ~; are solutions of the same initial-value problem in a coordinate
chart around p. By Theorem 5.2.18, 79 = 1 on an open neighborhood of ¢1, so S is also open in
J.

As J is connected and S is a nonempty subset of J that is both open and closed, we have
S=J. O

Theorem 5.2.20. Let X be a smooth manifold and let £: X — TX be a smooth vector field,
There exists a unique mazximal local flow ®: D — X such that & = 0P/0t.

Proof. Let p € X. Let A(p) denote the set of integral curves of ¢ starting at p, and let B(p)
denote the set
B(p) ={JCR[3(y: J = X) € A(p)}

be the set of domains of integral curves of £ starting at p. By the existence assertion of
Theorem 5.2.18, A(p) # &. Let
D,= [J JCR.
JeB(p)

Define a map ®,: : D, = X by ®,(t) := v(t) for some (y: J — X) € A(p). By the uniqueness
assertion of Theorem 5.2.18, ®,, is well defined. Let D(§) == {(t,p) € R x X | t € D,} and define
amap ®: D(§) = X by ®(t,p) == ®p(t).

It suffices to establish the following assertions:

(1) for each p € X, ®(0,p) = ®,(0) = p;

(2) for each p € X and each s,t € R, ®(t)®(s,p) = ®(t + s,p) whenever the left-hand side is
defined;



(3) D(¢) is open in R x X
(4) ®: D(§) — X is smooth.

Claim (1) is true by definition.

Consider Claim (2). Let p € X, let s € Dy, let ¢ .= ®(s,p), and let v(t) = ®(t + s,p)
whenever the latter is defined. By the chain rule, v is an integral curve of ¢ starting at ¢, so
v = ®, by Theorem 5.2.18. It follows that ®(t + s,p) = ®(t, ®(s,p)) when both sides are defined.
Since @, and ®, are maximal by construction, if ¢ € D, then t + s € D), so ®(t, ®(s,p)) is
defined as soon as ®(t + s, p) is defined.

Consider Claims (3) and (4). Let V' C D(&) denote the subset given by the point (¢, p) such
that there exist an open interval J C R containing 0 and ¢, and an open neighborhood p € U C X
such that ® is defined and smooth on J x U C R x X. By definition, V is open in R x X, and
|y is smooth, so it suffices to show that V = D(¢).

Let (to,po) € D(§)— V. Suppose that ¢y > 0. The same argument will apply in the alternative
case tg < 0. Let

T=sup{t e R| (¢, po) € V}.

By Theorem 5.2.18, ® is defined and smooth in an open neighborhood of (0, pg), so 7 > 0.

Let gop == ®,,(7). By Theorem 5.2.18, there exist ¢ € R~ and an open neighborhood
qo € Up C X such that ®: (—¢,¢) x Uy — X is defined and smooth.

Choose t; < 7 such that ¢t; +¢& > 7 and ®,,(t1) € Up. By definition of V and t; < 7, we
have (t,pg) € V. Thus, ® is defined and smooth on some (—d,t 4+ §) x U; with py € U; open.
As ®(t1,po) € Uy, there is an open neighborhood py € Uy C X such that ®({¢t;} x Uy) C Up.
We have t1,p(=)®(t — t1, ®(¢1,p)) when the right-hand side is defined. By construction of ¢,
®(t1,p) is defined for p € Uy and smooth in p. As ®(t1,p) € Uy, it follows that (¢t — t1, P(¢1,p))
is defined for p € Uy and |t — ¢;| < € and smooth in (¢, p). This shows that ® extends to a local
flow on (—0d,t1 + ) x Uy. As t; + & > 7, this contradicts our choice of 7, so V' = D(¢). O

5.3 Ehresmann’s fibration theorem

Definition 5.3.1. Let f: X — Y be a smooth map of smooth manifolds.

(1) We say that f is a trivial fibration if there exist a smooth manifold Z and a diffeomorphism
p: X =Y x Z such that mop = f, where 7: Y x Z — Y is the projection. We refer to Z as
the fiber of f.

(2) We say that f is a locally trivial fibration if, for each y € Y, there exists an open
neighborhood V' C Y such that f~1(V) — V is a trivial fibration.

Example 5.3.2. The projection (z1,...,Zmin) = (T1,...,Tm): R™T™ — R™ is a trivial
fibration.

Remark 5.3.3. By Example 5.1.4, each submersion is a trivial fibration of the form Example 5.3.2
locally on X and Y. In general, however, a submersion f: X — Y need not even be locally trivial
fibrations globally on X.

Example 5.3.4. Each map f: @ — Y is a trivial fibration. Indeed, @ x Y ~ &.

Example 5.3.5. The 2-torus T? = S' x S! is the total space of a trivial fibration over S! by
projection onto either factor.

Example 5.3.6. The open Mobius strip M is obtained from X = [0,1] x (0,1) by identifying
(0,t) with (1,1 —t) and giving it the quotient topology. Similarly, we may construct S! from
[0, 1] by identifying 0 and 1. Consider the map 7: X — [0, 1] given by (z,t) — z. This map is
compatible with the equivalence relations defining M and S', so we have a commutative square



of continuous maps
X——M

|
[0,1]—S!

in which ¢ and ¢’ are the quotient maps. The map f is a locally trivial fibration The map f is a
locally trivial fibration, but it is not a global trivial fibration: if it were, then the total space
would be homeomorphic to S' x S! = T2. However, the total space M is not orientable, whereas
T? is orientable. We will discuss orientability later.

Lemma 5.3.7. Let X be a smooth manifold, let K C X be a quasi-compact subspace, let
®: D — X be a mazimal local flow, and let p € X. If D, = (a,b) C R with b < 0o, then there
ezists € € Rsq such that ®(t,p) € K fort > b, —¢.

Proof. Choose an open cover of {0} x K by subsets of R x X of the form V,, := (—=d4,04) X Uy
with d4 € R>0,U, € X open, and a € A. As K ~ {0} x K is quasi-compact, there exists a finite
subset A’ C A such that the V, with a € A" cover {0} x K. Letting 0 < &€ < min {da},¢ 4/, We
have [—¢,¢] x K C DN (R x K).

Choose T' € (b—¢,b) with ®(T,p) € K and let ®(t,p) =@t —T,d(T,p)) for T <t <T +e.
This extends ® to a larger flow domain, as b < T+ ¢, contradicting the maximality of ®. O

Lemma 5.3.8. Let n € Z>q and let f: X — R" be a smooth map of smooth manifolds. If f is
a proper submersion, then f is a trivial fibration.

Proof. By Corollary 5.1.8, f is an open map. By Proposition 1.5.10.(2), f is also a closed map.
Thus, f(X) € R"™ is both open and closed. By [add reference], R™ is connected, so it follows
that f(X)=R" or X = @.

By Example 5.3.4, if X = &, then f is a trivial fibration.

Suppose that X # &. As f is a submersion, m := dim(X) — n > 0. By Proposition 5.1.1 and
Theorem 4.1.19, there exist:

e an open cover {Uy},c 4 of X;

e for each o € A, a smooth chart ¢,: U, — U, with U, C R" an open subspace;

e for each o € A, a commutative diagram

Ua %1004 %Rﬂ“rkn
(5.3.8.a) fl P l“ lﬂ
R" R" R"

where 7 denotes the projection m(z1, ..., Tmin) = (21,...,2,); and
e a partition of unity {py},cz. , subordinate to the cover {Ua},ca-
We introduce the following notation:
o for each k € Z>¢, we choose a € A such that supp(pr) C U, and we let ¢ = ¢q;
e for each N € Z>( and each 1 <i < NN, ¢; denotes the ith standard basis vector in RN ;

o foreach N € Z>p and each 1 <i < N, D; n: RN — TRY denotes the smooth vector field
that sends each ¢ € R to the element of T, qRN ~ RY given by equivalence class of the
path t +— q + e;t: (—,e) — RY through ¢; and

o foreach 1 <1i < n, §: X — TX denotes the smooth vector field given by

&i(a) =D pr(@) (e ) (Dimin (k) =D prla) - [t — o5 (or(q) + eit))-
k k

For each o € A, each 1 < i < n, and each ¢ € U,, we have

(5.3.8.h) A7 (Dim4n(@a(q))) = Din(f(q)).



Indeed, this follows from the identifications

A7 (Dimin(palq))) = dn([t = valq) + eit])
= [t = 7m(palq) + eit)]
= [t = 7(palq)) + m(eit)]
= [t = flq) +eit]
= Din(f(q)),

where we appeal to (5.3.8.a).
We claim that, for each 1 < ¢ < n, the vector field &; lifts the vector field D; ., i.e., the square

X——TX
(5380) f ! df

R» 2 TR

commutes. Indeed, for each ¢ € X, we have

A/ (i(9)) = df (3 r(@)dle ) (Dimn(i(a))))
k

= Zk:pk(Q)df (A2 ) (Dimn(r(a)))) [add reference]
= 2 A@d(f o ) Drmenlion(a)

= ; (@) (Dinn(21(q))) (5.3.8.a)
=Y re(@)Din(f () (5.3.8.b)

= lim(f(q»,

where the last equality follows from the definition of a partition of unity.
Fix an integer 1 < ¢ < n and a point u € R™. The curve 7;(t) := u + e;t is the unique solution
to the initial-value problem

ﬁzl(t) = €, :Yz(t) = U,
which exists by Theorem 5.2.18. Let ®;: A; — X be the maximal local flow generated by the
smooth vector field &;, as constructed in Theorem 5.2.20. For each ¢ € X, consider the set

Aig={teR|(tg) €A} CR

and the map v;: A;; — X given by 7;(t) = ®;(t,q). By (5.3.8.c), we have a commutative
diagram

Aig—s> X ——R”
& D;
ni>pyx Y pRn

Note that df ov, = 9(f o;)/0t and (f o~;)(0) = f(q). By the uniqueness assertion of Theo-
rem 5.2.18, we must therefore have

(5.3.8.d) f(@i(t,q) = f(i(t) = f(q) +eit

for each ¢ € A; 4. In other words, the local flow ®; lifts the local flow generated by D; .

We claim that ®; is a global flow. It follows from (5.3.8.d) that, for each a,b € R, f(®;((a,b),q)) C
K for some quasi-compact subspace K. For such a subspace K, we have ®;((a,b),q) C f~1(K).
As f is proper by hypothesis, f~!(K) is also quasi-compact. By Lemma 5.3.7, it follows that



A; 4 = R: otherwise, the image of ®;(—, ¢) would escape each quasi-compact subspace in a finite
amount of time. This proves the claim that ®; is a global flow.

To complete the proof, we use the global flows ®4,...,®, to construct a diffeomorphism
X = R"™ x f~1(0). Consider the map 7: R" x f~1(0) — X given by

7(t,q) = ((P1), © (P2)y, 0+ 0 (Pn)y, )(9),

for each t = (t1,...,t,) € R™ and each ¢ € f71(0). This is certainly a smooth map. It admits a
smooth inverse o: X — R"™ x f~1(0) given by

o(q) = (f(a), ((q)n)—fn(q) -0 (‘I)l)_fl(q))(Q))a
which completes the proof. O

Theorem 5.3.9 (Ehresmann). If f: X — Y is a proper submersion of smooth manifolds, then
f is a locally trivial fibration.

Proof. Without loss of generality, we may assume that ¥ = R". Indeed, the property of being a
local trivial fibration is local on the target, so we may cover Y be the domains of its smooth charts,
and we may cover each such domain by subspaces diffeomorphic to open disks in R™, and each
such disk is diffeomorphic to R™ by [add reference|. The claim now follows from Lemma 5.3.8. [
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