Topology of algebraic varieties

Brad Drew and Annette Huber

Wintersemester 2019/2020

Contents

5	Topology of proper submersions		1
	5.1	Constant-rank theorem	1
	5.2	Flows and vector fields	4
	5.3	Ehresmann's fibration theorem	7

5 Topology of proper submersions

5.1 Constant-rank theorem

Much of this section follows the exposition of [Dun18, §4.3].

Proposition 5.1.1 (Local normal form for submersions). Let $f: X \to \mathbb{R}^n$ be a submersion of smooth manifolds, let $p \in X$, and let $m \coloneqq \dim(X)$. There exists a smooth chart (U, φ) at p such that

$$(f \circ \varphi^{-1})(t_1, \dots, t_m) = (t_1, \dots, t_n)$$

for each $(t_1,\ldots,t_m) \in \varphi(U)$.

Proof. If (U, φ) is a smooth chart at p, then we may replace X by U and f by $f \circ \varphi^{-1}$ at any point in the proof. In particular, we may assume without loss of generality that $X \subseteq \mathbf{R}^n$ is an open subspace.

Let $f_1, \ldots, f_n \colon X \to \mathbf{R}$ denote the component functions of f. By Remark 4.5.5, we have $m \ge n$. As f is a submersion, the Jacobian matrix of f has rank n at p. Replacing (X, f) by a suitable $(U, f \circ \varphi^{-1})$ once more, we may assume without loss of generality that the submatrix $(\partial f_k / \partial x_\ell(p))_{1 \le k, \ell \le n}$ is invertible.

Consider the smooth map $\varphi \colon X \to \mathbf{R}^m$ given by

$$\varphi(t) \coloneqq (f_1(t), \dots, f_n(t), t_{n+1}, \dots, t_m)$$

for each $t = (t_1, \ldots, t_m) \in X$. The Jacobian matrix of φ at p with respect to the standard bases is given by

$$\begin{bmatrix} (\frac{\partial f_k}{\partial x_\ell}(p))_{1 \le k, \ell \le n} & * \\ 0 & I_{m-n}. \end{bmatrix}$$

In particular, $d\varphi_p$ is an **R**-linear isomorphism. By the inverse function theorem [add reference], φ is a diffeomorphism from an open neighborhood $p \in U \subseteq X$ to an open neighborhood $\varphi(p) \in \varphi(U) \subseteq \mathbf{R}^m$. For each $t \in \varphi(U)$, we have

$$(f \circ \varphi^{-1})(t) = (t_1, \dots, t_n).$$

Indeed, we may write each $t \in \varphi(U)$ as $\varphi(u)$ for some $u \in U$, and we have

$$(t_1, \ldots, t_n) = (\varphi_1(u), \ldots, \varphi_n(u)) = (f_1(u), \ldots, f_n(u)) = f(u) = f(\varphi^{-1}(u)),$$

where $\varphi_k \colon X \to \mathbf{R}$ is the *k*th component function of φ for $1 \leq k \leq n$. The pair (U, φ) is therefore the required smooth chart.

Lemma 5.1.2. Consider the following data and hypotheses:

- $X \subseteq \mathbf{R}^m$ and $Y \subseteq \mathbf{R}^n$ are open neighborhoods of the origins;
- $f: X \to Y$ is a smooth map of constant rank $r \in \mathbb{Z}_{\geq 0}$;
- f(0) = 0;
- the Jacobian matrix of f at p with respect to the standard bases is of the form

$$\begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$$

with A an invertible $r \times r$ matrix.

There exist smooth charts (U, φ) at $p \in X$ and (V, ψ) at $q \in \mathbf{R}^n$ such that

$$(\psi \circ f \circ \varphi^{-1})(t_1, \dots, t_m) = (t_1, \dots, t_r, 0, \dots, 0)$$

for each $(t_1, \ldots, t_m) \in \varphi(U) \subseteq \mathbf{R}^m$.

Proof. Recall that $r = \operatorname{rk}_x(f) \leq \min(m, n)$ by Remark 4.5.5. Let $f_1, \ldots, f_n \colon X \to \mathbf{R}$ denote the component functions of f. By hypothesis, the matrix $A = (\partial f_k / \partial x_\ell(0))_{1 \leq k, \ell \leq r}$ is invertible. Consider the smooth map $\varphi \colon X \to \mathbf{R}^m$ given by

$$\varphi(t) \coloneqq (f_1(t), \dots, f_r(t), t_{r+1}, \dots, t_m)$$

for each $t = (t_1, \ldots, t_m) \in X$. Note that $\varphi(0) = 0$ and that the Jacobian matrix of φ at 0 with respect to the standard bases is given by

$$\begin{bmatrix} \left(\frac{\partial f_k}{\partial x_\ell}(0)\right)_{1 \le k, \ell \le r} & * \\ 0 & I_{m-r} \end{bmatrix}$$

In particular, $d\varphi_0$ is an **R**-linear isomorphism. By the inverse function theorem [add reference], φ is a diffeomorphism on an open neighborhood $0 \in U \subseteq X$. For each $t \in \varphi(U)$, we have

$$(f \circ \varphi^{-1})(t) = (t_1, \dots, t_r, g_{r+1}(t), \dots, g_n(t)),$$

where $g_k := f_k \circ \varphi^{-1}$ for each $r < k \le n$. Indeed, we may write each $t \in \varphi(U)$ as $\varphi(u)$ for some $u \in U$, and we have

$$(t_1, \dots, t_r, f_{r+1}(\varphi^{-1}(t)), \dots, f_n(\varphi^{-1}(t))) = (f_1(u), \dots, f_r(u), f_{r+1}(\varphi^{-1}(\varphi(u))), \dots, f_n(\varphi^{-1}(\varphi(u)))) = (f_1(u), \dots, f_n(u)) = (f_1(\varphi^{-1}(t)), \dots, f_n(\varphi^{-1}(t))) = f(\varphi^{-1}(t)).$$

The Jacobian matrix of $f \circ \varphi^{-1}$ at each $t \in \varphi(U)$ is given by

$$\begin{bmatrix} I_r & 0 \\ * & \left(\frac{\partial g_k}{\partial x_\ell}(t)\right)_{\substack{r < k \le n \\ r < \ell \le m}} \end{bmatrix}.$$

By [add reference], $d(f \circ \varphi^{-1}) = df \circ d\varphi^{-1}$. As φ^{-1} is a diffeomorphism on $\varphi(U)$, the rank of $f \circ \varphi^{-1}$ is equal to the rank of f, i.e., $f \circ \varphi^{-1}$ is of rank r on $\varphi(U)$. The form of our matrix representation of $d(f \circ \varphi^{-1})$ therefore implies that $\partial g_k / \partial x_\ell = 0$ for each $r < k \le n$ and each $r < \ell \le m$. In other words, the functions g_k with $r < k \le n$ are independent of t_{r+1}, \ldots, t_m .

Let $\alpha \colon \mathbf{R}^n \to \mathbf{R}^m$ be the smooth map given by

$$\alpha(t_1,\ldots,t_n)=(t_1,\ldots,t_r,0,\ldots,0)$$

For each $r < k \leq n$, we therefore have a well-defined smooth map $h_k: \alpha^{-1}(\varphi(U)) \to \mathbf{R}^n$ given by $h_k \coloneqq g_k \circ \alpha$. Consider the smooth map $\rho: \alpha^{-1}(\varphi(U)) \to \mathbf{R}^n$ given by

$$\rho(t) = (t_1, \dots, t_r, t_{r+1} + h_{r+1}(t), \dots, t_n + h_n(t)),$$

We have $\rho(0) = 0$ and the **R**-linear map $d\rho_0$ is represented by the matrix

$$\begin{bmatrix} I_r & 0 \\ * & I_{n-r} \end{bmatrix}.$$

Thus, ρ is a diffeomorphism on an open neighborhood $0 \in V \subseteq \alpha^{-1}(\varphi(U))$. Let $\psi \colon \rho(V) \to V$ denote the smooth map inverse to $\rho \colon V \to \rho(V)$.

To complete the proof, choose an open neighborhood $0 \in U' \subseteq \varphi(U)$ such that $(f \circ \varphi^{-1})(U') \subseteq V$. The smooth charts $(\varphi^{-1}(U'), \varphi)$ and (V, ψ) satisfy the required condition: for each $t \in U'$, we have

$$(\psi \circ f \circ \varphi^{-1})(t) = (\rho|_V)^{-1}(t_1, \dots, t_r, g_{r+1}(t), \dots, g_n(t)) = (\rho|_V)^{-1}(t_1, \dots, t_r, h_{r+1}(t_1, \dots, t_r, 0, \dots, 0), \dots, h_n(t_1, \dots, t_r, 0, \dots, 0)) = (t_1, \dots, t_r, 0, \dots, 0),$$

as required.

Theorem 5.1.3 (Constant-rank). Consider the following data and hypotheses:

- $f: X \to Y$ is a smooth map of smooth manifolds of respective dimensions m and n;
- $x \in X$ and $y \coloneqq f(x) \in Y$; and
- f is of constant rank r.

There exist smooth charts (U, φ) at x and (V, ψ) at y such that

$$(\psi \circ f \circ \varphi^{-1})(t_1, \dots, t_m) = (t_1, \dots, t_r, 0, \dots, 0)$$

for each $t = (t_1, \ldots, t_m) \in \varphi(U) \subseteq \mathbf{R}^m$.

Proof. The assertion is local with respect to X and Y. Replacing X and Y by the codomains of smooth charts at x and y, respectively, we may assume without loss of generality that $X \subseteq \mathbf{R}^m$ and $Y \subseteq \mathbf{R}^n$ are open subspaces. Suitably modifying our charts, we may furthermore assume that x = 0 and y = 0.

By hypothesis, df_0 is of rank r. The matrix of df_0 with respect to the standard bases therefore contains an invertible $r \times r$ submatrix. Modifying our charts once more, we may assume that the Jacobian matrix satisfies the hypotheses of Lemma 5.1.2, and the claim follows.

Example 5.1.4. Each submersion $f: X \to Y$ of smooth manifolds is of constant rank: indeed, df_x is surjective for each x, hence of rank $\dim(Y)$. In this case, Theorem 5.1.3 tells us that, locally on X and Y, the map f looks like the standard projection $(x, y) \mapsto x: \mathbf{R}^m \times \mathbf{R}^r \to \mathbf{R}^m$.

Proposition 5.1.5. Each submersion $f: X \to Y$ of smooth manifolds is an open map.

_	_

Proof. By Example 5.1.4, there exist an open cover $\{V_{\alpha}\}_{\alpha \in A}$ of Y and, for each $\alpha \in A$, an open cover $\{U_{\alpha\beta}\}_{\beta\in B_{\alpha}}$ such that the map $f: U_{\alpha\beta} \to V_{\beta}$ is homeomorphic to a standard projection $\mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^n$. Each such standard projection is open. As open subsets are stable under arbitrary unions, the claim follows.

Example 5.1.6. Each immersion $f: X \to Y$ of smooth manifolds is of constant rank: indeed, df_x is injective for each x, hence of rank $\dim(X)$. In this case, Theorem 5.1.3 tells us that, locally on X and Y, the map f looks like the standard inclusion $x \mapsto (x, 0): \mathbb{R}^m \to \mathbb{R}^m \times \mathbb{R}^n$.

Definition 5.1.7. Let $f: X \to Y$ be a smooth map of smooth manifolds.

(1) Let $x \in X$. We say that x is a regular point with respect to f if df_x is surjective. We say that x is a critical point with respect to f if it is not regular.

(2) Let $y \in Y$. We say that y is a regular value of f if each $x \in f^{-1}(y)$ is a regular point. In particular, if $f^{-1}(y) = \emptyset$, then y is a regular value. We say that y is a critical value of f if it is not a regular value.

Corollary 5.1.8. Let $f: X \to Y$ be a smooth map of smooth manifolds of respective dimensions m and n, and let $y \in Y$ be a regular value such that $f^{-1}(y) \neq \emptyset$. The preimage $f^{-1}(y)$ admits a smooth structure of dimension m - n such that the inclusion $f^{-1}(y) \hookrightarrow X$ is an embedding.

5.2 Flows and vector fields

Much of this section follows the exposition of [Dun18, Chapter 7] and [Lee13, Chapter 9].

Flows

Definition 5.2.1. Let X be a smooth manifold. A global flow on X is a smooth map $\Phi \colon \mathbf{R} \times X \to X$ such that:

- for each $p \in X$, $\Phi(0, p) = p$; and
- for each $p \in X$, for each $s, t \in \mathbf{R}$, $\Phi(t, \Phi(s, p)) = \Phi(t + s, p)$.

Example 5.2.2. The function $L: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by $L(s,t) \coloneqq s+t$ is a flow on the smooth manifold \mathbb{R} .

Example 5.2.3. For each $t \in \mathbf{R}$, let A(t) denote the 2 × 2 matrix

$$\begin{vmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{vmatrix}.$$

The function $\Phi \colon \mathbf{R} \times \mathbf{R}^2 \to \mathbf{R}^2$ given by $\Phi(t, v) = A(t)v$ is a global flow on \mathbf{R}^2 .

Remark 5.2.4. Let X be a smooth manifold. The datum of a global flow on X is equivalent to that of a group morphism $\alpha : : \mathbf{R} \to \text{Diff}(X)$, where Diff(X) is the group of diffeomorphisms $\varphi : X \to X$ with respect to composition.

Definition 5.2.5. Let X be a smooth manifold. A flow domain of X is a subset $D \subseteq \mathbf{R} \times X$ such that, for each $p \in X$, the subset $D_p := \{t \in \mathbf{R} \mid (t,p) \in D\} \subseteq \mathbf{R}$ is an open interval containing 0.

Definition 5.2.6. Let X be a smooth manifold. A *local flow on* X is a smooth map $\Phi: D \to X$ such that:

- $D \subseteq \mathbf{R} \times X$ is a flow domain;
- for each $p \in X$, $\Phi(0, p) = p$; and
- for each $p \in X$, for each $s \in D_p$, and each $t \in D_{\Phi(s,p)}$, if $t + s \in D_p$, then $\Phi(t, \Phi(s,p)) = \Phi(t + s, p)$.

The local flow Φ is *maximal* if there is no local flow $\Psi \colon E \to X$ such that $D \subsetneq E$ and $\Psi|_D = \Phi$.

Remark 5.2.7. In Example 5.2.17, we will see why the generality of local flows is needed.

Definition 5.2.8. Let X be a smooth manifold and let $\Phi: D \to X$ be a local flow. The *velocity* field $\frac{\partial \Phi}{\partial t}: X \to TX$ is the vector field given by

$$\frac{\partial \Phi}{\partial t}(p) = [t \mapsto \Phi(t, p)].$$

This is well defined since this tangent vector only depends on the values of the curve $\Phi(-, p)$ in a small neighborhood of p.

Exercise 5.2.9. Let X be a smooth manifold and let $\Phi: D \to X$ be a local flow. Show that the velocity field $\partial \Phi / \partial t: X \to TX$ is a smooth vector field.

Definition 5.2.10. Let X be a smooth manifold and let $\Phi: D \to X$ be a local flow. For each $p \in X$, the flow line of Φ through p is the path $\Phi_p: D_p \to X$ given by $\Phi_p(t) = \Phi(t, p)$.

Integral curves

Definition 5.2.11. Let $a, b \in \mathbf{R}$, let X be a smooth manifold, and let $\gamma: (a, b) \to X$ be a smooth map. The velocity curve $\partial \gamma / \partial t: (a, b) \to TX$ of γ is the map given by

$$\frac{\partial \gamma}{\partial t} \colon s \mapsto [t \mapsto \gamma(s+t)].$$

Exercise 5.2.12. With the notation and hypotheses of Definition 5.2.11, show that $\partial \gamma / \partial t$ is a smooth map.

Definition 5.2.13. Let X be a smooth manifold, let $\xi: X \to TX$ be a smooth vector field, and let $p \in X$. An *integral curve of* ξ *starting at* p is a smooth map $\gamma: J \to X$ such that:

- $J \subseteq \mathbf{R}$ is an open interval containing 0;
- $\gamma(0) = p$; and
- for each $s \in J$, $\frac{\partial \gamma}{\partial t}(s) = \xi(\gamma(s))$.

Example 5.2.14. Consider the vector field $\partial/\partial x$ on \mathbf{R}^2 and the point $p = (a, b) \in \mathbf{R}^2$. The map $\gamma : \mathbf{R} \to \mathbf{R}^2$ given by $\gamma(t) = (t + a, b)$ is an integral curve of $\partial/\partial x$ through p.

Example 5.2.15. Consider the vector field $\xi = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ on \mathbf{R}^2 . Finding an integral curve $\gamma : \mathbf{R} \to \mathbf{R}^2$ of ξ starting at p = (a, b) amounts to solving an initial-value problem:

$$\gamma'(t) = \xi(\gamma(t)), \qquad \gamma(0) = (a, b).$$

Writing $\gamma(t) = (x(t), y(t))$, this system takes the form

$$x'(t)\frac{\partial}{\partial x}\Big|_{\gamma(t)} + y'(t)\frac{\partial}{\partial y}\Big|_{\gamma(t)} = x(t)\frac{\partial}{\partial x}\Big|_{\gamma(t)} + y(t)\frac{\partial}{\partial y}\Big|_{\gamma(t)}, \qquad x(0) = a, \qquad y(0) = b.$$

As $\partial/\partial x$ and $\partial/\partial y$ are linearly independent, this is equivalent to the system

$$x'(t) = x(t),$$
 $y'(t) = y(t),$ $x(0) = a,$ $y(0) = b,$

which admits the unique solution $\gamma(t) = (a \exp(t), b \exp(t)).$

Vector flows

Remark 5.2.16. Let X be a smooth manifold, let Φ be a local flow, and let $\partial \Phi / \partial t$ be the associated velocity field. An integral curve of $\partial \Phi / \partial t$ starting at $p \in X$ is a flow line Φ_p of Φ .

Unless X is quasi-compact, there may exist smooth vector fields on X that do not arise as velocity fields of global flows on X as the following example illustrates.

Example 5.2.17. Let $X = \mathbf{R}_{<0} \times \mathbf{R}$, let $\xi = \partial/\partial x$, and let $p = (a, b) \in X$. As in Example 5.2.14, the integral curve of ξ starting at p is given by $\gamma(t) = (t + a, b)$. However, $\gamma(t)$ is only defined for t < -a. If we had $\xi = \partial \Phi/\partial t$, then the integral curve of ξ starting at p would be the flow line Φ_p , and would therefore be defined at each time $t \in \mathbf{R}$.

Theorem 5.2.18 (Existence, uniqueness, smoothness). Let $U \subseteq \mathbf{R}^n$ be an open subset, let $\xi: U \to \mathbf{R}^n$ be a smooth map, and let $(t_0, x_0) \in \mathbf{R} \times U$. There exist $\varepsilon \in \mathbf{R}_{>0}$, an open neighborhood $x_0 \in U_0 \subseteq U$, and a smooth map $\Phi: (t_0 - \varepsilon, t_0 + \varepsilon) \times U_0 \to U$ such that, for each $x \in U_0$, $\gamma(t) := \Phi(t, x)$ is the unique solution to

$$\gamma'(t) = \xi(\gamma(t)), \qquad \gamma(t_0) = x$$

on $(t_0 - \varepsilon, t_0 + \varepsilon)$.

Proof. See [Lee13, Appendix D].

Lemma 5.2.19. Let X be a smooth manifold, let $\xi: X \to TX$ be a smooth vector field, and let $\gamma_0, \gamma_1: J \to X$ be integral curves to ξ defined on an open interval $J \subseteq \mathbf{R}$ containing 0. If there exists $t_0 \in J$ such that $\gamma_0(t_0) = \gamma_1(t_0)$, then $\gamma_0 = \gamma_1$.

Proof. Let $S := \{t \in J \mid \gamma_0(t) = \gamma_1(t)\}$ and let $t_0 \in S$. We claim that S = J. Let $\varphi: J \to X \times X$ be the continuous map induced by γ_0 and γ_1 by the universal property of the product (Proposition 1.2.1). Note that $S = \varphi^{-1}(\Delta_X)$, where $\Delta_X \subseteq X \times X$ is the diagonal. As X is a manifold, it is Hausdorff, so Δ_X is closed by Proposition 1.3.17, so S is closed in J.

For each $t_1 \in S$, γ_0 and γ_1 are solutions of the same initial-value problem in a coordinate chart around p. By Theorem 5.2.18, $\gamma_0 = \gamma_1$ on an open neighborhood of t_1 , so S is also open in J.

As J is connected and S is a nonempty subset of J that is both open and closed, we have S = J.

Theorem 5.2.20. Let X be a smooth manifold and let $\xi: X \to TX$ be a smooth vector field, There exists a unique maximal local flow $\Phi: D \to X$ such that $\xi = \partial \Phi / \partial t$.

Proof. Let $p \in X$. Let A(p) denote the set of integral curves of ξ starting at p, and let B(p) denote the set

$$B(p) \coloneqq \{ J \subseteq \mathbf{R} \mid \exists (\gamma \colon J \to X) \in A(p) \}$$

be the set of domains of integral curves of ξ starting at p. By the existence assertion of Theorem 5.2.18, $A(p) \neq \emptyset$. Let

$$D_p \coloneqq \bigcup_{J \in B(p)} J \subseteq \mathbf{R}$$

Define a map $\Phi_p: : D_p \to X$ by $\Phi_p(t) \coloneqq \gamma(t)$ for some $(\gamma: J \to X) \in A(p)$. By the uniqueness assertion of Theorem 5.2.18, Φ_p is well defined. Let $D(\xi) \coloneqq \{(t,p) \in \mathbf{R} \times X \mid t \in D_p\}$ and define a map $\Phi: D(\xi) \to X$ by $\Phi(t,p) \coloneqq \Phi_p(t)$.

It suffices to establish the following assertions:

(1) for each $p \in X$, $\Phi(0, p) = \Phi_p(0) = p$;

(2) for each $p \in X$ and each $s, t \in \mathbf{R}$, $\Phi(t)\Phi(s, p) = \Phi(t + s, p)$ whenever the left-hand side is defined;

(3) $D(\xi)$ is open in $\mathbf{R} \times X$;

(4) $\Phi: D(\xi) \to X$ is smooth.

Claim (1) is true by definition.

Consider Claim (2). Let $p \in X$, let $s \in D_p$, let $q \coloneqq \Phi(s, p)$, and let $\gamma(t) \coloneqq \Phi(t + s, p)$ whenever the latter is defined. By the chain rule, γ is an integral curve of ξ starting at q, so $\gamma = \Phi_q$ by Theorem 5.2.18. It follows that $\Phi(t + s, p) = \Phi(t, \Phi(s, p))$ when both sides are defined. Since Φ_p and Φ_q are maximal by construction, if $t \in D_q$, then $t + s \in D_p$, so $\Phi(t, \Phi(s, p))$ is defined as soon as $\Phi(t + s, p)$ is defined.

Consider Claims (3) and (4). Let $V \subseteq D(\xi)$ denote the subset given by the point (t, p) such that there exist an open interval $J \subseteq \mathbf{R}$ containing 0 and t, and an open neighborhood $p \in U \subseteq X$ such that Φ is defined and smooth on $J \times U \subseteq \mathbf{R} \times X$. By definition, V is open in $\mathbf{R} \times X$, and $\Phi|_V$ is smooth, so it suffices to show that $V = D(\xi)$.

Let $(t_0, p_0) \in D(\xi) - V$. Suppose that $t_0 > 0$. The same argument will apply in the alternative case $t_0 < 0$. Let

$$\tau \coloneqq \sup\{t \in \mathbf{R} \mid (t, p_0) \in V\}.$$

By Theorem 5.2.18, Φ is defined and smooth in an open neighborhood of $(0, p_0)$, so $\tau > 0$.

Let $q_0 := \Phi_{p_0}(\tau)$. By Theorem 5.2.18, there exist $\varepsilon \in \mathbf{R}_{>0}$ and an open neighborhood $q_0 \in U_0 \subseteq X$ such that $\Phi: (-\varepsilon, \varepsilon) \times U_0 \to X$ is defined and smooth.

Choose $t_1 < \tau$ such that $t_1 + \varepsilon > \tau$ and $\Phi_{p_0}(t_1) \in U_0$. By definition of V and $t_1 < \tau$, we have $(t, p_0) \in V$. Thus, Φ is defined and smooth on some $(-\delta, t + \delta) \times U_1$ with $p_0 \in U_1$ open. As $\Phi(t_1, p_0) \in U_0$, there is an open neighborhood $p_0 \in U_1 \subseteq X$ such that $\Phi(\{t_1\} \times U_1) \subseteq U_0$. We have $t_1, p(=)\Phi(t - t_1, \Phi(t_1, p))$ when the right-hand side is defined. By construction of t_1 , $\Phi(t_1, p)$ is defined for $p \in U_1$ and smooth in p. As $\Phi(t_1, p) \in U_0$, it follows that $\Phi(t - t_1, \Phi(t_1, p))$ is defined for $p \in U_1$ and $|t - t_1| < \varepsilon$ and smooth in (t, p). This shows that Φ extends to a local flow on $(-\delta, t_1 + \varepsilon) \times U_1$. As $t_1 + \varepsilon > \tau$, this contradicts our choice of τ , so $V = D(\xi)$.

5.3 Ehresmann's fibration theorem

Definition 5.3.1. Let $f: X \to Y$ be a smooth map of smooth manifolds.

(1) We say that f is a *trivial fibration* if there exist a smooth manifold Z and a diffeomorphism $\varphi \colon X \to Y \times Z$ such that $\pi \circ \varphi = f$, where $\pi \colon Y \times Z \to Y$ is the projection. We refer to Z as the *fiber of f*.

(2) We say that f is a *locally trivial fibration* if, for each $y \in Y$, there exists an open neighborhood $V \subseteq Y$ such that $f^{-1}(V) \to V$ is a trivial fibration.

Example 5.3.2. The projection $(x_1, \ldots, x_{m+n}) \mapsto (x_1, \ldots, x_m) \colon \mathbf{R}^{m+n} \to \mathbf{R}^m$ is a trivial fibration.

Remark 5.3.3. By Example 5.1.4, each submersion is a trivial fibration of the form Example 5.3.2 locally on X and Y. In general, however, a submersion $f: X \to Y$ need not even be locally trivial fibrations globally on X.

Example 5.3.4. Each map $f: \emptyset \to Y$ is a trivial fibration. Indeed, $\emptyset \times Y \simeq \emptyset$.

Example 5.3.5. The 2-torus $\mathbf{T}^2 = \mathbf{S}^1 \times \mathbf{S}^1$ is the total space of a trivial fibration over \mathbf{S}^1 by projection onto either factor.

Example 5.3.6. The open Möbius strip M is obtained from $X = [0, 1] \times (0, 1)$ by identifying (0, t) with (1, 1 - t) and giving it the quotient topology. Similarly, we may construct \mathbf{S}^1 from [0, 1] by identifying 0 and 1. Consider the map $\pi \colon X \to [0, 1]$ given by $(x, t) \mapsto x$. This map is compatible with the equivalence relations defining M and \mathbf{S}^1 , so we have a commutative square

of continuous maps

$$\begin{array}{c} X \xrightarrow{q} M \\ \pi \downarrow \qquad \qquad \downarrow^{f} \\ [0,1] \xrightarrow{q'} \mathbf{S}^{1} \end{array}$$

in which q and q' are the quotient maps. The map f is a locally trivial fibration The map f is a locally trivial fibration, but it is not a global trivial fibration: if it were, then the total space would be homeomorphic to $\mathbf{S}^1 \times \mathbf{S}^1 = \mathbf{T}^2$. However, the total space M is not orientable, whereas \mathbf{T}^2 is orientable. We will discuss orientability later.

Lemma 5.3.7. Let X be a smooth manifold, let $K \subseteq X$ be a quasi-compact subspace, let $\Phi: D \to X$ be a maximal local flow, and let $p \in X$. If $D_p = (a, b) \subseteq \mathbf{R}$ with $b < \infty$, then there exists $\varepsilon \in \mathbf{R}_{>0}$ such that $\Phi(t, p) \notin K$ for $t > b_p - \varepsilon$.

Proof. Choose an open cover of $\{0\} \times K$ by subsets of $\mathbf{R} \times X$ of the form $V_{\alpha} := (-\delta_{\alpha}, \delta_{\alpha}) \times U_{\alpha}$ with $\delta_{\alpha} \in \mathbf{R}_{>0}, U_{\alpha} \subseteq X$ open, and $\alpha \in A$. As $K \simeq \{0\} \times K$ is quasi-compact, there exists a finite subset $A' \subseteq A$ such that the V_{α} with $\alpha \in A'$ cover $\{0\} \times K$. Letting $0 < \varepsilon < \min \{\delta_{\alpha}\}_{\alpha \in A'}$, we have $[-\varepsilon, \varepsilon] \times K \subseteq D \cap (\mathbf{R} \times K)$.

Choose $T \in (b - \varepsilon, b)$ with $\Phi(T, p) \in K$ and let $\Phi(t, p) \coloneqq \Phi(t - T, \Phi(T, p))$ for $T \leq t \leq T + \varepsilon$. This extends Φ to a larger flow domain, as $b < T + \varepsilon$, contradicting the maximality of Φ . \Box

Lemma 5.3.8. Let $n \in \mathbb{Z}_{\geq 0}$ and let $f: X \to \mathbb{R}^n$ be a smooth map of smooth manifolds. If f is a proper submersion, then f is a trivial fibration.

Proof. By Corollary 5.1.8, f is an open map. By Proposition 1.5.10.(2), f is also a closed map. Thus, $f(X) \subseteq \mathbf{R}^n$ is both open and closed. By [add reference], \mathbf{R}^n is connected, so it follows that $f(X) = \mathbf{R}^n$ or $X = \emptyset$.

By Example 5.3.4, if $X = \emptyset$, then f is a trivial fibration.

Suppose that $X \neq \emptyset$. As f is a submersion, $m := \dim(X) - n \ge 0$. By Proposition 5.1.1 and Theorem 4.1.19, there exist:

- an open cover $\{U_{\alpha}\}_{\alpha \in A}$ of X;
- for each $\alpha \in A$, a smooth chart $\varphi_{\alpha} \colon U_{\alpha} \to \tilde{U}_{\alpha}$ with $\tilde{U}_{\alpha} \subseteq \mathbf{R}^{n+m}$ an open subspace;
- for each $\alpha \in A$, a commutative diagram

where π denotes the projection $\pi(x_1, \ldots, x_{m+n}) = (x_1, \ldots, x_n)$; and

• a partition of unity $\{\rho_k\}_{k \in \mathbb{Z}_{\geq 0}}$ subordinate to the cover $\{U_{\alpha}\}_{\alpha \in A}$.

We introduce the following notation:

- for each $k \in \mathbb{Z}_{\geq 0}$, we choose $\alpha \in A$ such that $\operatorname{supp}(\rho_k) \subseteq U_{\alpha}$ and we let $\varphi_k \coloneqq \varphi_{\alpha}$;
- for each $N \in \mathbf{Z}_{\geq 0}$ and each $1 \leq i \leq N$, e_i denotes the *i*th standard basis vector in \mathbf{R}^N ;
- for each $N \in \mathbf{Z}_{\geq 0}$ and each $1 \leq i \leq N$, $D_{i,N} \colon \mathbf{R}^N \to T\mathbf{R}^N$ denotes the smooth vector field that sends each $q \in \mathbf{R}^N$ to the element of $T_q \mathbf{R}^N \simeq \mathbf{R}^N$ given by equivalence class of the path $t \mapsto q + e_i t \colon (-\varepsilon, \varepsilon) \to \mathbf{R}^N$ through q; and
- for each $1 \leq i \leq n, \xi_i \colon X \to TX$ denotes the smooth vector field given by

$$\xi_i(q) \coloneqq \sum_k \rho_k(q) \mathrm{d}(\varphi_k^{-1})(D_{i,m+n}(\varphi_k(q))) = \sum_k \rho_k(q) \cdot [t \mapsto \varphi_k^{-1}(\varphi_k(q) + e_i t)].$$

For each $\alpha \in A$, each $1 \leq i \leq n$, and each $q \in U_{\alpha}$, we have

(5.3.8.b)
$$d\pi(D_{i,m+n}(\varphi_{\alpha}(q))) = D_{i,n}(f(q))$$

Indeed, this follows from the identifications

$$d\pi(D_{i,m+n}(\varphi_{\alpha}(q))) = d\pi([t \mapsto \varphi_{\alpha}(q) + e_{i}t])$$

$$= [t \mapsto \pi(\varphi_{\alpha}(q) + e_{i}t)]$$

$$= [t \mapsto \pi(\varphi_{\alpha}(q)) + \pi(e_{i}t)]$$

$$= [t \mapsto f(q) + e_{i}t]$$

$$= D_{i,n}(f(q)),$$

where we appeal to (5.3.8.a).

We claim that, for each $1 \leq i \leq n$, the vector field ξ_i lifts the vector field $D_{i,n}$, i.e., the square

(5.3.8.c)
$$\begin{array}{c} X \xrightarrow{\xi_i} TX \\ f \bigvee \begin{array}{c} \xi_i \\ \downarrow df \\ \mathbf{R}^n \xrightarrow{D_{i,n}} T\mathbf{R}^n \end{array}$$

commutes. Indeed, for each $q \in X$, we have

$$df(\xi_{i}(q)) = df\left(\sum_{k} \rho_{k}(q)d(\varphi_{k}^{-1})(D_{i,m+n}(\varphi_{k}(q)))\right)$$

$$= \sum_{k} \rho_{k}(q)df(d(\varphi_{k}^{-1})(D_{i,m+n}(\varphi_{k}(q))))$$

$$= \sum_{k} \rho_{k}(q)d(f \circ \varphi_{k}^{-1})(D_{i,m+n}(\varphi_{k}(q)))$$

$$= \sum_{k} \rho_{k}(q)d\pi(D_{i,m+n}(\varphi_{k}(q))) \qquad (5.3.8.a)$$

$$= \sum_{k} \rho_{k}(q)D_{i,n}(f(q)) \qquad (5.3.8.b)$$

$$= D_{i,n}(f(q)),$$

where the last equality follows from the definition of a partition of unity.

Fix an integer $1 \le i \le n$ and a point $u \in \mathbf{R}^n$. The curve $\bar{\gamma}_i(t) \coloneqq u + e_i t$ is the unique solution to the initial-value problem

$$\bar{\gamma}_i'(t) = e_i, \qquad \bar{\gamma}_i(t) = u,$$

which exists by Theorem 5.2.18. Let $\Phi_i: \Delta_i \to X$ be the maximal local flow generated by the smooth vector field ξ_i , as constructed in Theorem 5.2.20. For each $q \in X$, consider the set

$$\Delta_{i,q} \coloneqq \{t \in \mathbf{R} \mid (t,q) \in \Delta_i\} \subseteq \mathbf{R}$$

and the map $\gamma_i \colon \Delta_{i,q} \to X$ given by $\gamma_i(t) \coloneqq \Phi_i(t,q)$. By (5.3.8.c), we have a commutative diagram

$$\Delta_{i,q} \xrightarrow{\gamma_i} X \xrightarrow{f} \mathbf{R}^n \\ \downarrow_{\xi_i} \qquad \downarrow_{D_{i,n}} \\ \gamma_i \xrightarrow{df} TX \xrightarrow{df} T\mathbf{R}^n$$

Note that $df \circ \gamma'_i = \partial (f \circ \gamma_i) / \partial t$ and $(f \circ \gamma_i)(0) = f(q)$. By the uniqueness assertion of Theorem 5.2.18, we must therefore have

(5.3.8.d)
$$f(\Phi_i(t,q)) = f(\gamma_i(t)) = f(q) + e_i t$$

for each $t \in \Delta_{i,q}$. In other words, the local flow Φ_i lifts the local flow generated by $D_{i,n}$.

We claim that Φ_i is a global flow. It follows from (5.3.8.d) that, for each $a, b \in \mathbf{R}$, $f(\Phi_i((a, b), q)) \subseteq K$ for some quasi-compact subspace K. For such a subspace K, we have $\Phi_i((a, b), q) \subseteq f^{-1}(K)$. As f is proper by hypothesis, $f^{-1}(K)$ is also quasi-compact. By Lemma 5.3.7, it follows that $\Delta_{i,q} = \mathbf{R}$: otherwise, the image of $\Phi_i(-,q)$ would escape each quasi-compact subspace in a finite amount of time. This proves the claim that Φ_i is a global flow.

To complete the proof, we use the global flows Φ_1, \ldots, Φ_n to construct a diffeomorphism $X \simeq \mathbf{R}^n \times f^{-1}(0)$. Consider the map $\tau : \mathbf{R}^n \times f^{-1}(0) \to X$ given by

$$\tau(t,q) \coloneqq ((\Phi_1)_{t_1} \circ (\Phi_2)_{t_2} \circ \cdots \circ (\Phi_n)_{t_n})(q),$$

for each $t = (t_1, \ldots, t_n) \in \mathbf{R}^n$ and each $q \in f^{-1}(0)$. This is certainly a smooth map. It admits a smooth inverse $\sigma \colon X \to \mathbf{R}^n \times f^{-1}(0)$ given by

$$\sigma(q) \coloneqq (f(q), ((\Phi_n)_{-f_n(q)} \circ \cdots \circ (\Phi_1)_{-f_1(q)})(q)),$$

which completes the proof.

Theorem 5.3.9 (Ehresmann). If $f: X \to Y$ is a proper submersion of smooth manifolds, then f is a locally trivial fibration.

Proof. Without loss of generality, we may assume that $Y = \mathbf{R}^n$. Indeed, the property of being a local trivial fibration is local on the target, so we may cover Y be the domains of its smooth charts, and we may cover each such domain by subspaces diffeomorphic to open disks in \mathbf{R}^n , and each such disk is diffeomorphic to \mathbf{R}^n by [add reference]. The claim now follows from Lemma 5.3.8. \Box

References

- [Dun18] Bjørn Ian Dundas. A short course in differential topology. Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 2018.
- [Lee13] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.