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5 Topology of proper submersions

5.1 Constant-rank theorem

Much of this section follows the exposition of [Dun18, §4.3].

Proposition 5.1.1 (Local normal form for submersions). Let f : X → Rn be a submersion of
smooth manifolds, let p ∈ X, and let m := dim(X). There exists a smooth chart (U,ϕ) at p such
that

(f ◦ ϕ−1)(t1, . . . , tm) = (t1, . . . , tn)

for each (t1, . . . , tm) ∈ ϕ(U).

Proof. If (U,ϕ) is a smooth chart at p, then we may replace X by U and f by f ◦ ϕ−1 at any
point in the proof. In particular, we may assume without loss of generality that X ⊆ Rn is an
open subspace.

Let f1, . . . , fn : X → R denote the component functions of f . By Remark 4.5.5, we have
m ≥ n. As f is a submersion, the Jacobian matrix of f has rank n at p. Replacing (X, f) by a
suitable (U, f ◦ ϕ−1) once more, we may assume without loss of generality that the submatrix
(∂fk/∂x`(p))1≤k,`≤n is invertible.

Consider the smooth map ϕ : X → Rm given by

ϕ(t) := (f1(t), . . . , fn(t), tn+1, . . . , tm)

for each t = (t1, . . . , tm) ∈ X. The Jacobian matrix of ϕ at p with respect to the standard bases
is given by [

(∂fk∂x
`
(p))1≤k,`≤n ∗

0 Im−n.

]
In particular, dϕp is an R-linear isomorphism. By the inverse function theorem [add reference],
ϕ is a diffeomorphism from an open neighborhood p ∈ U ⊆ X to an open neighborhood
ϕ(p) ∈ ϕ(U) ⊆ Rm. For each t ∈ ϕ(U), we have

(f ◦ ϕ−1)(t) = (t1, . . . , tn).
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Indeed, we may write each t ∈ ϕ(U) as ϕ(u) for some u ∈ U , and we have

(t1, . . . , tn) = (ϕ1(u), . . . , ϕn(u)) = (f1(u), . . . , fn(u)) = f(u) = f(ϕ−1(u)),

where ϕk : X → R is the kth component function of ϕ for 1 ≤ k ≤ n. The pair (U,ϕ) is therefore
the required smooth chart.

Lemma 5.1.2. Consider the following data and hypotheses:
• X ⊆ Rm and Y ⊆ Rn are open neighborhoods of the origins;
• f : X → Y is a smooth map of constant rank r ∈ Z≥0;
• f(0) = 0;
• the Jacobian matrix of f at p with respect to the standard bases is of the form[

A B
0 D

]

with A an invertible r × r matrix.
There exist smooth charts (U,ϕ) at p ∈ X and (V, ψ) at q ∈ Rn such that

(ψ ◦ f ◦ ϕ−1)(t1, . . . , tm) = (t1, . . . , tr, 0, . . . , 0)

for each (t1, . . . , tm) ∈ ϕ(U) ⊆ Rm.

Proof. Recall that r = rkx(f) ≤ min(m,n) by Remark 4.5.5. Let f1, . . . , fn : X → R denote
the component functions of f . By hypothesis, the matrix A = (∂fk/∂x`(0))1≤k,`≤r is invertible.
Consider the smooth map ϕ : X → Rm given by

ϕ(t) := (f1(t), . . . , fr(t), tr+1, . . . , tm)

for each t = (t1, . . . , tm) ∈ X. Note that ϕ(0) = 0 and that the Jacobian matrix of ϕ at 0 with
respect to the standard bases is given by[

(∂fk∂x
`
(0))1≤k,`≤r ∗

0 Im−r.

]

In particular, dϕ0 is an R-linear isomorphism. By the inverse function theorem [add reference],
ϕ is a diffeomorphism on an open neighborhood 0 ∈ U ⊆ X. For each t ∈ ϕ(U), we have

(f ◦ ϕ−1)(t) = (t1, . . . , tr, gr+1(t), . . . , gn(t)),

where gk := fk ◦ ϕ−1 for each r < k ≤ n. Indeed, we may write each t ∈ ϕ(U) as ϕ(u) for some
u ∈ U , and we have

(t1, . . . , tr, fr+1(ϕ−1(t)), . . . , fn(ϕ−1(t)))
= (f1(u), . . . , fr(u), fr+1(ϕ−1(ϕ(u))), . . . , fn(ϕ−1(ϕ(u))))
= (f1(u), . . . , fn(u))
= (f1(ϕ−1(t)), . . . , fn(ϕ−1(t)))
= f(ϕ−1(t)).

The Jacobian matrix of f ◦ ϕ−1 at each t ∈ ϕ(U) is given byIr 0
∗

(∂gk
∂x
`
(t)
)
r<k≤n
r<`≤m

 .
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By [add reference], d(f ◦ ϕ−1) = df ◦ dϕ−1. As ϕ−1 is a diffeomorphism on ϕ(U), the rank of
f ◦ ϕ−1 is equal to the rank of f , i.e., f ◦ ϕ−1 is of rank r on ϕ(U). The form of our matrix
representation of d(f ◦ ϕ−1) therefore implies that ∂gk/∂x` = 0 for each r < k ≤ n and each
r < ` ≤ m. In other words, the functions gk with r < k ≤ n are independent of tr+1, . . . , tm.

Let α : Rn → Rm be the smooth map given by

α(t1, . . . , tn) = (t1, . . . , tr, 0, . . . , 0).

For each r < k ≤ n, we therefore have a well-defined smooth map hk : α−1(ϕ(U))→ Rn given
by hk := gk ◦ α. Consider the smooth map ρ : α−1(ϕ(U))→ Rn given by

ρ(t) = (t1, . . . , tr, tr+1 + hr+1(t), . . . , tn + hn(t)).

We have ρ(0) = 0 and the R-linear map dρ0 is represented by the matrix[
Ir 0
∗ In−r

]
.

Thus, ρ is a diffeomorphism on an open neighborhood 0 ∈ V ⊆ α−1(ϕ(U)). Let ψ : ρ(V ) → V
denote the smooth map inverse to ρ : V → ρ(V ).

To complete the proof, choose an open neighborhood 0 ∈ U ′ ⊆ ϕ(U) such that (f ◦ ϕ−1)(U ′) ⊆
V . The smooth charts (ϕ−1(U ′), ϕ) and (V, ψ) satisfy the required condition: for each t ∈ U ′, we
have

(ψ ◦ f ◦ ϕ−1)(t) = (ρ|V )−1(t1, . . . , tr, gr+1(t), . . . , gn(t))
= (ρ|V )−1(t1, . . . , tr, hr+1(t1, . . . , tr, 0, . . . , 0), . . . , hn(t1, . . . , tr, 0, . . . , 0))
= (t1, . . . , tr, 0, . . . , 0),

as required.

Theorem 5.1.3 (Constant-rank). Consider the following data and hypotheses:
• f : X → Y is a smooth map of smooth manifolds of respective dimensions m and n;
• x ∈ X and y := f(x) ∈ Y ; and
• f is of constant rank r.

There exist smooth charts (U,ϕ) at x and (V, ψ) at y such that

(ψ ◦ f ◦ ϕ−1)(t1, . . . , tm) = (t1, . . . , tr, 0, . . . , 0)

for each t = (t1, . . . , tm) ∈ ϕ(U) ⊆ Rm.

Proof. The assertion is local with respect to X and Y . Replacing X and Y by the codomains of
smooth charts at x and y, respectively, we may assume without loss of generality that X ⊆ Rm

and Y ⊆ Rn are open subspaces. Suitably modifying our charts, we may furthermore assume
that x = 0 and y = 0.

By hypothesis, df0 is of rank r. The matrix of df0 with respect to the standard bases therefore
contains an invertible r× r submatrix. Modifying our charts once more, we may assume that the
Jacobian matrix satisfies the hypotheses of Lemma 5.1.2, and the claim follows.

Example 5.1.4. Each submersion f : X → Y of smooth manifolds is of constant rank: indeed,
dfx is surjective for each x, hence of rank dim(Y ). In this case, Theorem 5.1.3 tells us that,
locally on X and Y , the map f looks like the standard projection (x, y) 7→ x : Rm ×Rr → Rm.

Proposition 5.1.5. Each submersion f : X → Y of smooth manifolds is an open map.
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Proof. By Example 5.1.4, there exist an open cover {Vα}α∈A of Y and, for each α ∈ A, an open
cover {Uαβ}β∈Bα such that the map f : Uαβ → Vβ is homeomorphic to a standard projection
Rm × Rn → Rn. Each such standard projection is open. As open subsets are stable under
arbitrary unions, the claim follows.

Example 5.1.6. Each immersion f : X → Y of smooth manifolds is of constant rank: indeed,
dfx is injective for each x, hence of rank dim(X). In this case, Theorem 5.1.3 tells us that, locally
on X and Y , the map f looks like the standard inclusion x 7→ (x, 0) : Rm → Rm ×Rn.

Definition 5.1.7. Let f : X → Y be a smooth map of smooth manifolds.
(1) Let x ∈ X. We say that x is a regular point with respect to f if dfx is surjective. We say

that x is a critical point with respect to f if it is not regular.
(2) Let y ∈ Y . We say that y is a regular value of f if each x ∈ f−1(y) is a regular point. In

particular, if f−1(y) = ∅, then y is a regular value. We say that y is a critical value of f if it is
not a regular value.

Corollary 5.1.8. Let f : X → Y be a smooth map of smooth manifolds of respective dimensions
m and n, and let y ∈ Y be a regular value such that f−1(y) 6= ∅. The preimage f−1(y) admits a
smooth structure of dimension m− n such that the inclusion f−1(y) ↪→ X is an embedding.

5.2 Flows and vector fields

Much of this section follows the exposition of [Dun18, Chapter 7] and [Lee13, Chapter 9].

Flows

Definition 5.2.1. Let X be a smooth manifold. A global flow on X is a smooth map Φ: R×X →
X such that:
• for each p ∈ X, Φ(0, p) = p; and
• for each p ∈ X, for each s, t ∈ R, Φ(t,Φ(s, p)) = Φ(t+ s, p).

Example 5.2.2. The function L : R ×R → R given by L(s, t) := s+ t is a flow on the smooth
manifold R.

Example 5.2.3. For each t ∈ R, let A(t) denote the 2× 2 matrix[
cos(t) −sin(t)
sin(t) cos(t)

]
.

The function Φ: R ×R2 → R2 given by Φ(t, v) = A(t)v is a global flow on R2.

Remark 5.2.4. Let X be a smooth manifold. The datum of a global flow on X is equivalent
to that of a group morphism α : : R → Diff(X), where Diff(X) is the group of diffeomorphisms
ϕ : X → X with respect to composition.

Definition 5.2.5. Let X be a smooth manifold. A flow domain of X is a subset D ⊆ R ×X
such that, for each p ∈ X, the subset Dp := {t ∈ R | (t, p) ∈ D} ⊆ R is an open interval
containing 0.

Definition 5.2.6. Let X be a smooth manifold. A local flow on X is a smooth map Φ: D → X
such that:
• D ⊆ R ×X is a flow domain;
• for each p ∈ X, Φ(0, p) = p; and
• for each p ∈ X, for each s ∈ Dp, and each t ∈ DΦ(s,p), if t+ s ∈ Dp, then Φ(t,Φ(s, p)) =

Φ(t+ s, p).
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The local flow Φ is maximal if there is no local flow Ψ: E → X such that D ( E and Ψ|D = Φ.

Remark 5.2.7. In Example 5.2.17, we will see why the generality of local flows is needed.

Definition 5.2.8. Let X be a smooth manifold and let Φ: D → X be a local flow. The velocity
field ∂Φ

∂t : X → TX is the vector field given by

∂Φ
∂t

(p) = [t 7→ Φ(t, p)].

This is well defined since this tangent vector only depends on the values of the curve Φ(−, p) in
a small neighborhood of p.

Exercise 5.2.9. Let X be a smooth manifold and let Φ: D → X be a local flow. Show that the
velocity field ∂Φ/∂t : X → TX is a smooth vector field.

Definition 5.2.10. Let X be a smooth manifold and let Φ: D → X be a local flow. For each
p ∈ X, the flow line of Φ through p is the path Φp : Dp → X given by Φp(t) = Φ(t, p).

Integral curves

Definition 5.2.11. Let a, b ∈ R, let X be a smooth manifold, and let γ : (a, b) → X be a
smooth map. The velocity curve ∂γ/∂t : (a, b)→ TX of γ is the map given by

∂γ

∂t
: s 7→ [t 7→ γ(s+ t)].

Exercise 5.2.12. With the notation and hypotheses of Definition 5.2.11, show that ∂γ/∂t is a
smooth map.

Definition 5.2.13. Let X be a smooth manifold, let ξ : X → TX be a smooth vector field, and
let p ∈ X. An integral curve of ξ starting at p is a smooth map γ : J → X such that:
• J ⊆ R is an open interval containing 0;
• γ(0) = p; and
• for each s ∈ J , ∂γ∂t (s) = ξ(γ(s)).

Example 5.2.14. Consider the vector field ∂/∂x on R2 and the point p = (a, b) ∈ R2. The
map γ : R → R2 given by γ(t) = (t+ a, b) is an integral curve of ∂/∂x through p.

Example 5.2.15. Consider the vector field ξ = x ∂
∂x + y ∂

∂y on R2. Finding an integral curve
γ : R → R2 of ξ starting at p = (a, b) amounts to solving an initial-value problem:

γ′(t) = ξ(γ(t)), γ(0) = (a, b).

Writing γ(t) = (x(t), y(t)), this system takes the form

x′(t) ∂
∂x

∣∣∣
γ(t)

+ y′(t) ∂
∂y

∣∣∣
γ(t)

= x(t) ∂
∂x

∣∣∣
γ(t)

+ y(t) ∂
∂y

∣∣∣
γ(t)

, x(0) = a, y(0) = b.

As ∂/∂x and ∂/∂y are linearly independent, this is equivalent to the system

x′(t) = x(t), y′(t) = y(t), x(0) = a, y(0) = b,

which admits the unique solution γ(t) = (a exp(t), b exp(t)).
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Vector flows

Remark 5.2.16. Let X be a smooth manifold, let Φ be a local flow, and let ∂Φ/∂t be the
associated velocity field. An integral curve of ∂Φ/∂t starting at p ∈ X is a flow line Φp of Φ.

Unless X is quasi-compact, there may exist smooth vector fields on X that do not arise as
velocity fields of global flows on X as the following example illustrates.

Example 5.2.17. Let X = R<0×R, let ξ = ∂/∂x, and let p = (a, b) ∈ X. As in Example 5.2.14,
the integral curve of ξ starting at p is given by γ(t) = (t+ a, b). However, γ(t) is only defined for
t < −a. If we had ξ = ∂Φ/∂t, then the integral curve of ξ starting at p would be the flow line
Φp, and would therefore be defined at each time t ∈ R.

Theorem 5.2.18 (Existence, uniqueness, smoothness). Let U ⊆ Rn be an open subset, let
ξ : U → Rn be a smooth map, and let (t0, x0) ∈ R×U . There exist ε ∈ R>0, an open neighborhood
x0 ∈ U0 ⊆ U , and a smooth map Φ: (t0 − ε, t0 + ε) × U0 → U such that, for each x ∈ U0,
γ(t) := Φ(t, x) is the unique solution to

γ′(t) = ξ(γ(t)), γ(t0) = x

on (t0 − ε, t0 + ε).

Proof. See [Lee13, Appendix D].

Lemma 5.2.19. Let X be a smooth manifold, let ξ : X → TX be a smooth vector field, and let
γ0, γ1 : J → X be integral curves to ξ defined on an open interval J ⊆ R containing 0. If there
exists t0 ∈ J such that γ0(t0) = γ1(t0), then γ0 = γ1.

Proof. Let S := {t ∈ J | γ0(t) = γ1(t)} and let t0 ∈ S. We claim that S = J . Let ϕ : J →
X ×X be the continuous map induced by γ0 and γ1 by the universal property of the product
(Proposition 1.2.1). Note that S = ϕ−1(∆X), where ∆X ⊆ X ×X is the diagonal. As X is a
manifold, it is Hausdorff, so ∆X is closed by Proposition 1.3.17, so S is closed in J .

For each t1 ∈ S, γ0 and γ1 are solutions of the same initial-value problem in a coordinate
chart around p. By Theorem 5.2.18, γ0 = γ1 on an open neighborhood of t1, so S is also open in
J .

As J is connected and S is a nonempty subset of J that is both open and closed, we have
S = J .

Theorem 5.2.20. Let X be a smooth manifold and let ξ : X → TX be a smooth vector field,
There exists a unique maximal local flow Φ: D → X such that ξ = ∂Φ/∂t.

Proof. Let p ∈ X. Let A(p) denote the set of integral curves of ξ starting at p, and let B(p)
denote the set

B(p) := {J ⊆ R | ∃(γ : J → X) ∈ A(p)}

be the set of domains of integral curves of ξ starting at p. By the existence assertion of
Theorem 5.2.18, A(p) 6= ∅. Let

Dp :=
⋃

J∈B(p)
J ⊆ R.

Define a map Φp : : Dp → X by Φp(t) := γ(t) for some (γ : J → X) ∈ A(p). By the uniqueness
assertion of Theorem 5.2.18, Φp is well defined. Let D(ξ) := {(t, p) ∈ R×X | t ∈ Dp} and define
a map Φ: D(ξ)→ X by Φ(t, p) := Φp(t).

It suffices to establish the following assertions:
(1) for each p ∈ X, Φ(0, p) = Φp(0) = p;
(2) for each p ∈ X and each s, t ∈ R, Φ(t)Φ(s, p) = Φ(t+ s, p) whenever the left-hand side is

defined;
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(3) D(ξ) is open in R ×X;
(4) Φ: D(ξ)→ X is smooth.
Claim (1) is true by definition.
Consider Claim (2). Let p ∈ X, let s ∈ Dp, let q := Φ(s, p), and let γ(t) := Φ(t + s, p)

whenever the latter is defined. By the chain rule, γ is an integral curve of ξ starting at q, so
γ = Φq by Theorem 5.2.18. It follows that Φ(t+ s, p) = Φ(t,Φ(s, p)) when both sides are defined.
Since Φp and Φq are maximal by construction, if t ∈ Dq, then t + s ∈ Dp, so Φ(t,Φ(s, p)) is
defined as soon as Φ(t+ s, p) is defined.

Consider Claims (3) and (4). Let V ⊆ D(ξ) denote the subset given by the point (t, p) such
that there exist an open interval J ⊆ R containing 0 and t, and an open neighborhood p ∈ U ⊆ X
such that Φ is defined and smooth on J × U ⊆ R ×X. By definition, V is open in R ×X, and
Φ|V is smooth, so it suffices to show that V = D(ξ).

Let (t0, p0) ∈ D(ξ)−V . Suppose that t0 > 0. The same argument will apply in the alternative
case t0 < 0. Let

τ := sup{t ∈ R | (t, p0) ∈ V }.

By Theorem 5.2.18, Φ is defined and smooth in an open neighborhood of (0, p0), so τ > 0.
Let q0 := Φp0(τ). By Theorem 5.2.18, there exist ε ∈ R>0 and an open neighborhood

q0 ∈ U0 ⊆ X such that Φ: (−ε, ε)× U0 → X is defined and smooth.
Choose t1 < τ such that t1 + ε > τ and Φp0(t1) ∈ U0. By definition of V and t1 < τ , we

have (t, p0) ∈ V . Thus, Φ is defined and smooth on some (−δ, t + δ) × U1 with p0 ∈ U1 open.
As Φ(t1, p0) ∈ U0, there is an open neighborhood p0 ∈ U1 ⊆ X such that Φ({t1} × U1) ⊆ U0.
We have t1, p(=)Φ(t − t1,Φ(t1, p)) when the right-hand side is defined. By construction of t1,
Φ(t1, p) is defined for p ∈ U1 and smooth in p. As Φ(t1, p) ∈ U0, it follows that Φ(t− t1,Φ(t1, p))
is defined for p ∈ U1 and |t− t1| < ε and smooth in (t, p). This shows that Φ extends to a local
flow on (−δ, t1 + ε)× U1. As t1 + ε > τ , this contradicts our choice of τ , so V = D(ξ).

5.3 Ehresmann’s fibration theorem

Definition 5.3.1. Let f : X → Y be a smooth map of smooth manifolds.
(1) We say that f is a trivial fibration if there exist a smooth manifold Z and a diffeomorphism

ϕ : X → Y × Z such that π ◦ ϕ = f , where π : Y × Z → Y is the projection. We refer to Z as
the fiber of f .

(2) We say that f is a locally trivial fibration if, for each y ∈ Y , there exists an open
neighborhood V ⊆ Y such that f−1(V )→ V is a trivial fibration.

Example 5.3.2. The projection (x1, . . . , xm+n) 7→ (x1, . . . , xm) : Rm+n → Rm is a trivial
fibration.

Remark 5.3.3. By Example 5.1.4, each submersion is a trivial fibration of the form Example 5.3.2
locally on X and Y . In general, however, a submersion f : X → Y need not even be locally trivial
fibrations globally on X.

Example 5.3.4. Each map f : ∅→ Y is a trivial fibration. Indeed, ∅× Y ' ∅.

Example 5.3.5. The 2-torus T2 = S1 × S1 is the total space of a trivial fibration over S1 by
projection onto either factor.

Example 5.3.6. The open Möbius strip M is obtained from X = [0, 1]× (0, 1) by identifying
(0, t) with (1, 1 − t) and giving it the quotient topology. Similarly, we may construct S1 from
[0, 1] by identifying 0 and 1. Consider the map π : X → [0, 1] given by (x, t) 7→ x. This map is
compatible with the equivalence relations defining M and S1, so we have a commutative square
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of continuous maps
X M

[0, 1] S1

q
π f

q′

in which q and q′ are the quotient maps. The map f is a locally trivial fibration The map f is a
locally trivial fibration, but it is not a global trivial fibration: if it were, then the total space
would be homeomorphic to S1 × S1 = T2. However, the total space M is not orientable, whereas
T2 is orientable. We will discuss orientability later.

Lemma 5.3.7. Let X be a smooth manifold, let K ⊆ X be a quasi-compact subspace, let
Φ: D → X be a maximal local flow, and let p ∈ X. If Dp = (a, b) ⊆ R with b <∞, then there
exists ε ∈ R>0 such that Φ(t, p) 6∈ K for t > bp − ε.

Proof. Choose an open cover of {0} ×K by subsets of R ×X of the form Vα := (−δα, δα)× Uα
with δα ∈ R>0,Uα ⊆ X open, and α ∈ A. As K ' {0} ×K is quasi-compact, there exists a finite
subset A′ ⊆ A such that the Vα with α ∈ A′ cover {0} ×K. Letting 0 < ε < min {δα}α∈A′ , we
have [−ε, ε]×K ⊆ D ∩ (R ×K).

Choose T ∈ (b− ε, b) with Φ(T, p) ∈ K and let Φ(t, p) := Φ(t− T,Φ(T, p)) for T ≤ t ≤ T + ε.
This extends Φ to a larger flow domain, as b < T + ε, contradicting the maximality of Φ.

Lemma 5.3.8. Let n ∈ Z≥0 and let f : X → Rn be a smooth map of smooth manifolds. If f is
a proper submersion, then f is a trivial fibration.

Proof. By Corollary 5.1.8, f is an open map. By Proposition 1.5.10.(2), f is also a closed map.
Thus, f(X) ⊆ Rn is both open and closed. By [add reference], Rn is connected, so it follows
that f(X) = Rn or X = ∅.

By Example 5.3.4, if X = ∅, then f is a trivial fibration.
Suppose that X 6= ∅. As f is a submersion, m := dim(X)− n ≥ 0. By Proposition 5.1.1 and

Theorem 4.1.19, there exist:
• an open cover {Uα}α∈A of X;
• for each α ∈ A, a smooth chart ϕα : Uα → Ũα with Ũα ⊆ Rn+m an open subspace;
• for each α ∈ A, a commutative diagram

(5.3.8.a)
Uα Ũα Rm+n

Rn Rn Rn

f π
ϕ−1
α

π

where π denotes the projection π(x1, . . . , xm+n) = (x1, . . . , xn); and
• a partition of unity {ρk}k∈Z≥0

subordinate to the cover {Uα}α∈A.
We introduce the following notation:
• for each k ∈ Z≥0, we choose α ∈ A such that supp(ρk) ⊆ Uα and we let ϕk := ϕα;
• for each N ∈ Z≥0 and each 1 ≤ i ≤ N , ei denotes the ith standard basis vector in RN ;
• for each N ∈ Z≥0 and each 1 ≤ i ≤ N , Di,N : RN → TRN denotes the smooth vector field
that sends each q ∈ RN to the element of TqRN ' RN given by equivalence class of the
path t 7→ q + eit : (−ε, ε)→ RN through q; and
• for each 1 ≤ i ≤ n, ξi : X → TX denotes the smooth vector field given by

ξi(q) :=
∑
k

ρk(q)d(ϕ−1
k )(Di,m+n(ϕk(q))) =

∑
k

ρk(q) · [t 7→ ϕ−1
k (ϕk(q) + eit)].

For each α ∈ A, each 1 ≤ i ≤ n, and each q ∈ Uα, we have

(5.3.8.b) dπ(Di,m+n(ϕα(q))) = Di,n(f(q)).
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Indeed, this follows from the identifications

dπ(Di,m+n(ϕα(q))) = dπ([t 7→ ϕα(q) + eit])
= [t 7→ π(ϕα(q) + eit)]
= [t 7→ π(ϕα(q)) + π(eit)]
= [t 7→ f(q) + eit]
= Di,n(f(q)),

where we appeal to (5.3.8.a).
We claim that, for each 1 ≤ i ≤ n, the vector field ξi lifts the vector field Di,n, i.e., the square

(5.3.8.c)
X TX

Rn TRn

ξi
f df

Di,n

commutes. Indeed, for each q ∈ X, we have

df(ξi(q)) = df
(∑
k

ρk(q)d(ϕ−1
k )(Di,m+n(ϕk(q)))

)
=
∑
k

ρk(q)df(d(ϕ−1
k )(Di,m+n(ϕk(q)))) [add reference]

=
∑
k

ρk(q)d(f ◦ ϕ−1
k )(Di,m+n(ϕk(q)))

=
∑
k

ρk(q)dπ(Di,m+n(ϕk(q))) (5.3.8.a)

=
∑
k

ρk(q)Di,n(f(q)) (5.3.8.b)

= Di,n(f(q)),

where the last equality follows from the definition of a partition of unity.
Fix an integer 1 ≤ i ≤ n and a point u ∈ Rn. The curve γ̄i(t) := u+ eit is the unique solution

to the initial-value problem
γ̄′i(t) = ei, γ̄i(t) = u,

which exists by Theorem 5.2.18. Let Φi : ∆i → X be the maximal local flow generated by the
smooth vector field ξi, as constructed in Theorem 5.2.20. For each q ∈ X, consider the set

∆i,q := {t ∈ R | (t, q) ∈ ∆i} ⊆ R

and the map γi : ∆i,q → X given by γi(t) := Φi(t, q). By (5.3.8.c), we have a commutative
diagram

∆i,q X Rn

TX TRn

γi

γ′i

f
ξi Di,n

df

Note that df ◦ γ′i = ∂(f ◦ γi)/∂t and (f ◦ γi)(0) = f(q). By the uniqueness assertion of Theo-
rem 5.2.18, we must therefore have

(5.3.8.d) f(Φi(t, q)) = f(γi(t)) = f(q) + eit

for each t ∈ ∆i,q. In other words, the local flow Φi lifts the local flow generated by Di,n.
We claim that Φi is a global flow. It follows from (5.3.8.d) that, for each a, b ∈ R, f(Φi((a, b), q)) ⊆

K for some quasi-compact subspace K. For such a subspace K, we have Φi((a, b), q) ⊆ f−1(K).
As f is proper by hypothesis, f−1(K) is also quasi-compact. By Lemma 5.3.7, it follows that
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∆i,q = R: otherwise, the image of Φi(−, q) would escape each quasi-compact subspace in a finite
amount of time. This proves the claim that Φi is a global flow.

To complete the proof, we use the global flows Φ1, . . . ,Φn to construct a diffeomorphism
X ∼→ Rn × f−1(0). Consider the map τ : Rn × f−1(0)→ X given by

τ(t, q) := ((Φ1)t1 ◦ (Φ2)t2 ◦ · · · ◦ (Φn)tn)(q),

for each t = (t1, . . . , tn) ∈ Rn and each q ∈ f−1(0). This is certainly a smooth map. It admits a
smooth inverse σ : X → Rn × f−1(0) given by

σ(q) := (f(q), ((Φn)−fn(q) ◦ · · · ◦ (Φ1)−f1(q))(q)),

which completes the proof.

Theorem 5.3.9 (Ehresmann). If f : X → Y is a proper submersion of smooth manifolds, then
f is a locally trivial fibration.

Proof. Without loss of generality, we may assume that Y = Rn. Indeed, the property of being a
local trivial fibration is local on the target, so we may cover Y be the domains of its smooth charts,
and we may cover each such domain by subspaces diffeomorphic to open disks in Rn, and each
such disk is diffeomorphic to Rn by [add reference]. The claim now follows from Lemma 5.3.8.

References
[Dun18] Bjørn Ian Dundas. A short course in differential topology. Cambridge Mathematical

Textbooks. Cambridge University Press, Cambridge, 2018.
[Lee13] John M. Lee. Introduction to smooth manifolds, volume 218 of Graduate Texts in

Mathematics. Springer, New York, second edition, 2013.

10


	Topology of proper submersions
	Constant-rank theorem
	Flows and vector fields
	Ehresmann's fibration theorem


