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4 Manifolds and vector bundles

4.1 Manifolds

Definition 4.1.1. A topological space X is called a topological manifold of dimension n if
(1) every point has a neighbourhood homeomorphic to an open ball in Rn,
(2) it is Hausdorff,
(3) and second countable, i.e., there is countable set of open subsets such that every subset is

union of a family of these.

Example 4.1.2. Rn satisfies all these conditions. We can use open balls D(x, r) with x ∈ Qn

and r ∈ Q>0 as a basis of the topology.

Remark 4.1.3. Voisin omits the second two conditions. Non-Hausdorff spaces are really bad
and we do not want them. Second countability is used to deduce the existence of partitions of
unity later on. That’s a very useful tool. Our main interest is in affine and projective varieties
and they satisfy the property. There is also the notion of a manifold with boundary. In this
terminology what we have defined above is also called manifold without boundary.

Definition 4.1.4. Let X be a topological manifold An real n-dimensional chart (U,ϕ) on
X consists of an open subspace U ⊆ X, an open subspace V ⊆ Rn, and a homeomorphism
ϕ : U → V . Analogously for a complex n-dimensional chart (U,ϕ) we have V ⊂ Cn.

Example 4.1.5. If X ⊂ Rn is open, the identity defines a chart on all of X.

Example 4.1.6. Let X = S1 = {z ∈ C||z| = 1} be the unit circle, z0 ∈ S1. We write z0 = eit0 .
The map π : R → S1 mapping t to eit is smooth and surjective, but not injective. It becomes
injective when restricting to V = (t0 − ε, t0 + ε) for ε small enough (e.g., ε < 2π). Let U be its
image under π. Then π|V : V → U is bijective and in fact a homeomorphism. Its inverse is a
chart.
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Example 4.1.7. Let X = RPn. For i = 0, 1 . . . , n let Ui = {[x0 : · · · : xn]|xi 6= 0}. Then
ϕi : Ui → Rn defined by

ϕi([x0 : · · · : xn]) =
(
x0
xi
, . . . ,

xi−1
xi

,
xi+1
xi

, . . .

)
is a chart. We call these charts standard charts of RPn.

The same construction also works for CPn.

Exercise 4.1.8. Let H ⊂ RPn by a hyperplane. Construct a chart for U = RPn rH.

Example 4.1.9. We consider the situation of the implicit function theorem. In the formulation
of Forster, Analysis 2: Let U1 ⊂ Rn, U2 ⊂ Rm an open. Let

F : U1 × U2 → Rm, (x, y) 7→ F (x, y)

be smooth. Let (a, b) ∈ U1 × U2 such F (a, b) = 0 and ∂F
∂y (a, b) invertible. Then there are open

neighbourhoods V1 ⊂ U1 of a and V2 ⊂ U2 of b and a C∞-map

g : V1 → V2

such that F (x, g(x)) = 0 for all x ∈ V1. Moreover, if (x, y) ∈ V1 × V2 with F (x, y) = 0, then
y = g(x).

Let X = {(x, y)|F (x, y) = 0} ⊂ U1×U2. Then U = X∩V1×V2 and the projection ϕ : U → V1
is a chart. The inverse map is given by x 7→ (x, g(x)).

Definition 4.1.10. A smooth atlas (Ui, ϕi)i∈I on X is a family of real n-dimensional charts
(Ui, ϕi)i∈I on X satisfying the following conditions:

(1) (Ui)i∈I is an open cover of X; and
(2) for each i, j ∈ I, the transition map

ϕj(Ui ∩ Uj)
ϕ−1

i−−→ Ui ∩ Uj
ϕj−→ ϕj(Ui ∩ Uj)

is a C∞-map (Definition 2.2.3).
We say that two atlases (Ui, ϕi)i∈I and (U ′j , ϕ′j)j∈J on X are equivalent if their union is an atlas.
Analogously we define a holomorphic atlas (Ui, ϕi)i∈I using complex charts and the transition
maps are holomorphic.

A smooth manifold is a topological manifold X together with the choice of an equivalence
class of smooth atlases. Analogously a complex manifold is a topological manifold X together
with the choice of an equivalence class of holomorphic atlases. A complex manifold of dimension
1 is also called Riemann surface

Example 4.1.11. U ⊆ Rn, Sn, Tn = Rn/Zn, Möbius strip, Klein bottle, RPn, y2 = x3 + x2

Lemma 4.1.12. Let U ⊂ RN open. Let

F : U → Rm

be smooth. Assume that the Jacobian
(
∂Fi
∂xj

)
i,j

has rank N −m in all points of X = {(x ∈ RN |
F (x) = 0}. Then X carries a canonical smooth-manifold structure.

Proof. Let x ∈ X. After reordering of the coordinates of RN we may choose a neighbourhood of
x in RN of the form U1 × U2 ⊂ RN−m × Rm satisfying the assumptions of the implicit function
theorem. This defines a chart in a neighbourhood of x. The transition maps are expressed in
terms of the function g defined in the implicit function theorem. In particular it is smooth. We
have found an atlas.
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The same lemma also works in the holomorphic setting.

Example 4.1.13. X = {(x, y) ∈ C2|y2 = x3 + x2}. We apply the lemma with F (x, y) =
y2 − x3 − x2. The Jacobi matrix is the gradient(∂F

∂x
,
∂F

∂y

)
= (−3x2 − 2x, 2y).

It has maximal rank (i.e., 1) unless y = 0 and 3x2 + 2x = x(3x + 2) = 0. Note that (−2/3, 0)
does not satisfy F , hence there is only one problematic point (0, 0). We get a manifold structure
on X◦ = X r {(0, 0)}.

We call (0, 0) a singularity of X. We will study them in more detail later on.

Example 4.1.14. Every holomorphic manifold of complex dimension n also defines a smooth
manifold of real dimension 2n by identifying Cn ∼→ R2n. It is an interesting question, but not
important to us, which smooth manifolds can be given the structure of a complex manifold.

The next step is to define morphisms, so that we get categories.

Definition 4.1.15. Let X and Y be smooth (or holomorphic) manifolds and let f : X → Y be
a map. We say that f is smooth (or holomorphic) if, for each x ∈ X, there exists a chart (U,ϕ)
with x ∈ U and a chart (V, ψ) with f(x) ∈ V such that f(U) ⊆ V and the composite

ϕ(U) ϕ−1
−−→ U

f−→ V
ψ−→ ψ(V )

is smooth (or holomorphic). We say that f is a smooth diffeomorphism if it is a bijective smooth
map. We say that f is an isomorphism of complex manifolds if it is bijective and holomorphic.

Exercise 4.1.16. Show that the inverse f−1 of a smooth diffeomorphism is also smooth and
that the inverse f−1 of an isomorphism of complex manifolds is holomorphic.

Proposition 4.1.17. Let f : X → Y be a smooth map of smooth manifolds, let x ∈ X, let
(U,ϕ) be a chart with x ∈ U , and let (V, ψ) be a chart with f(x) ∈ V such that f(U) ⊆ V . The
composite

ϕ(U) ϕ−1
−−→ U

f−→ V
ψ−→ ψ(V )

is a smooth map.

Proof. Exercise. Note that smoothness of functions U → R for U ⊂ Rn is a local property.

Exercise 4.1.18. Let U ⊂ C, f : U → C holomorphic viewed as a holomorphic map of complex
manifolds. Let z0 ∈ U . Show that there are charts (U1, ϕ1) around z0 with ϕ1(z0) = 0 and
(U2, ϕ2) around f(z0) with ϕ2(f(z0)) = 0 such that f(U1) ⊂ U2 and the induced map

V1
ϕ−1

1−−→ U1 → U2
ϕ2−→ V2

is given by z 7→ zd for a natural number d.

Theorem 4.1.19 (Partition of Unity). Let X be a smooth manifold, {Uα}α∈I an open cover.
Then there are smooth functions fn : X → R for n ∈ N with compact support taking values in
[0, 1] such that:

(1) for every n there is α ∈ I such that the support of fi is contained in Uα;
(2) for every x ∈ X there are only finitely many α such that fα(x) 6= 0;
(3)

∑
α fα = 1.
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Example 4.1.20. Let X = R covered by a single U = R. Putting f1 = 1 does not do the trick
because we want functions with compact support. Instead choose smooth positive functions gn
(n ∈ Z) such that gn(x) = 0 for x /∈ [n− 1, n+ 2], gn(x) > 0 on [n, n+ 1]. They have compact
support and for every x ∈ R there are only finitely many n with gn(x) 6= 0. Hence g =

∑
gn

exists. We put for n ∈ N0

fn = gn + g−n
g

.

Then the functions sum to 1. They are all positive, so the values are in [0, 1].

The argument is fiddly and we do not give it here. Let us just see how the manifold axioms
come in. For all other details see [War83, Theorem 1.11].

Lemma 4.1.21 ([War83, Lemma 1.9]). Let X be a topological space which is locally compact,
Hausdorff and second countable. Then every open cover has a countable, locally finite refinement
consisting only of open sets with compact closures.

Proof. Let U = {Uα}α∈I be a fixed open cover. As X is second countable, there is a sequence
{Vi}i∈N of open sets such that every open set is a union of some of the Vi. For every x ∈ X we
choose a i(x) ∈ N such that x ∈ Vi, V̄i is compact. The compactness condition is achieved by
picking Vi such that there is a chart (U,ϕ) with Vi ⊂ U and ϕ(Vi) contained in a small enough
open ball that the closure is still in ϕ(U). The family {Vi(x)}{i(x)|x∈X} is a countable refinement
of V. Its elements have a compact closure. We replace V by this subcover.

We construct a sequence
G1 ⊂ G2 ⊂ . . .

of open subsets with compact closure that
⋃∞
i=1 = X and

Ḡi ⊂ Gi+1.

Put G1 = V1. Let j2 be the smallest index greater than 1 such that

Ḡ1 ⊂
j2⋃
i=1

Ui.

Such an index exists because Ḡ1 is compact, hence the cover by all of V has a finite subcover.
We put

G2 =
j2⋃
i=1

Vi.

Let j3 be the smallest index greater than j2 such that

Ḡ2 ⊂
⋃
i = 1j2Ui = G3.

This sequence has the properties we wanted for Gi.
Now let U = {Uα}α∈I be a fixed open cover. The set ḠirḠi−1 is compact and contained in the

open setGi+1rḠi−2. For each i ≥ 3 choose a finite subcover of the open cover {Uα∩(Gi+1rḠi−2}α.
Also choose a finite subcover of the open cover {Uα ∩ Ḡ2}. This collection of open sets does the
trick.

Idea Proof of Theorem 4.1.19. A partition of unity subordinate to a refinement is also subordi-
nate to the original cover. Hence it suffices to consider a countable, locally finite cover such that
Ūα is compact. This looks very much like the cover of R by intervals (n− 1, n+ 2) that we used
in the example. After passing to coordinate charts, the same type of functions as in the example
can be used on balls.
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4.2 Vector bundles

Our next aim is to define the tangent bundle of a real or complex manifold. We start with an
example:

Example 4.2.1. We consider the unit circle S1 = {(x, y) ∈ R2|x2 + y2 = 1}. The tangent line
at (x0, y0) is has the parametrisation

t 7→ (y0,−x0)t+ (x0, y0).

The tangent space is given by

T(x0,y0)S
1 = {t(y0,−x0)|t ∈ R}.

It is a vector space of the same dimension as S1. This space varies as (x0, y0) varies. Together
they form the tangent bundle

TS1 = {(v, w) ∈ S1 × R2|v ⊥ w.}

It comes with a projection p : TS1 → S1. The fibre of v has the structure of a vector space.

The first step is to define objects like the tangent bundle.

Definition 4.2.2. Let X be a topological space. A real vector bundle of rank r on X is a consists
of a continuous

π : V → X

together with the structure of a real vector space of dimension R on Vx = π−1(x) such that there
exists an open cover an open cover (Ui)i∈I of X, and local trivialisations, i.e., homeomorphisms

τi : π−1(Ui)→ Ui ×Rr

satisfying the following conditions:
(1) for each i ∈ I, the triangle

π−1(Ui) Ui ×Rr

Ui

τi

π p

commutes, where p : Ui ×Rr → Ui denotes the projection; and
(2) for every i ∈ I, x ∈ Ui, the induced map

Vx → {x} × Rr → Rr

is an isomorphism of R-vector spaces.
Let f : X → Y be continuous, π : V → X and ξ : W → Y real vector bundles. A morphism of
vector bundles over f is a continuous map F : V →W making the diagram

V

��

F //W

��
X

f
// Y

commute such that for all x ∈ X the induced map

Fx : Vx →Wf(x)

is R-linear.
If we replace R by C in this definition, we get the notion of a complex vector bundle of rank r.

A real or complex vector bundle of rank 1 is called a real or complex line bundle (Geradenbündel
in German).
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Remark 4.2.3. By identifying C with R2, a complex vector bundle of rank r also defines a real
vector bundle of rank 2r.

Exercise 4.2.4. Let π : V → X be a vector bundle of rank r. Show that it is trivial, i.e.,
isomorphic to X × Rr with the standard vector bundle structure if and only if there are r
continuous sections ei : X → V (i.e., maps satisfying π ◦ ei = idX) such that for every x ∈ X the
tuple e1(x), . . . , er(x) is a basis of Vx.

Given a local trivialisation, the induced maps τij for each i, j ∈ I in the commutative diagram

τi(π−1(Ui ∩ Uj)) π−1(Ui ∩ Uj) τj(π−1(Ui ∩ Uj))

(Ui ∩ Uj)×Rr (Ui ∩ Uj)×Rr

τ−1
i

∼
τj

∼
τij

are called transition maps. They are automatically continuous, respect the fibres over Ui ∩ Uj
and are fibrewise linear. Hence the data of τij is equivalent to the data of a continuous map

ϕij : Ui ∩ Uj → Glr(R).

The transition maps are not arbitrary, but have to be compatible on triple intersections. They
satisfy the cocycle condition

ϕjk · ϕij = ϕik.

Exercise 4.2.5. The cocycle condition implies ϕii = id.

Proposition 4.2.6. Let X be topological space, U = (Ui)i∈I an open cover and

ϕij : Ui ∩ Uj → Glr(R)

continuous such that the cocycle condition is satisfied on Ui ∩ Uj ∩ Uk for all i, j, k ∈ I. Then
there is a real vector bundle π : V → X of rank r with transition functions

τij : Ui ∩ Uj × Rr → Ui ∩ Uj × Rr

given by
(x, v) 7→ (x, ϕij(x)(v)).

The bundle V is unique up to unique isomorphism.

Proof. We glue Vi = Ui × Rr along the open subsets Ui ∩ Uj × Rr inside Vi and Vj using τij as
gluing maps. This is well-defined because of the cocycle condition. The gluing gives a topological
space V . By construction, there is a continuous map V → X, the fibres are given vector space
structures and we have local trivialisations.

Example 4.2.7. Let X = S1, covered by U1 = {(x, y) ∈ S1|x 6= −1} and U2 = {(x, y) ∈ S1|x 6=
−1}. The trivial line bundle S1 × R has the transition map

ϕ12(v) = 1 ∈ Glr(R).

There is also the Möbius bundle with transition map

ϕ12(v) = −1.

All construction for vector spaces (direct sums, tensor products, exterior powers, ....) can
also applied to vector bundles. For example:
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Lemma 4.2.8. Let X be a topological space, π : V → X a vector bundle of rank r. Then there
is a canonical vector bundle ξ : V ∗ → X, the dual bundle of V , with ξ−1(x) = V ∗.

Proof. We use local trivialisations on a cover (Ui)i∈I and transition maps ϕij : Ui ∩ Uj → Rr for
V . Let ψij = (ϕ−1

ij )t. It is easy to check that they satisfy the cocycle condition and hence define
a vector. This is V ∗.

Exercise 4.2.9. Write out all diagrams!

Definition 4.2.10. (1) Let X be a smooth manifold. A smooth real or complex vector
bundle is a smooth map

π : V → X

of smooth manifolds together with the structure of a real or complex vector bundle on π such
that the local trivialisations are smooth maps.

(2) Let X be a complex manifold. A holomorphic vector bundle is a holomorphic map

π : V → X

of complex manifolds together with the structure of a complex vector bundle on π such that the
local trivialisations are holomorphic.

In the case of a smooth vector bundle, the transition maps into Glr(R) or Glr(C) are smooth.
In the case of a holomorphic vector bundle, the transition maps are holomorphic.

Remark 4.2.11. Given a holomorphic vector bundle of rank r on a complex manifold, we may
also view it as a smooth complex vector bundle on the associated real manifold.

4.3 Tangent bundles

Let X be a real manifold of dimension n, x ∈ X. We want to define the tangent space of X in x.
Tangent vectors are directions on X.

Example 4.3.1. If X ⊂ Rn is open, then the tangent space is Rn. Every vector v ∈ Rn defines
a straight line

t 7→ x+ tv

in X.

In general, it does make sense to talk about straight lines in X. If (U,ϕ) is a chart around
x, we could use the preimages of straight lines in ϕ(U). However, the result will depend on the
chart. Nevertheless:

Definition 4.3.2. Let X be a smooth manifold, x ∈ X. A smooth path through x is a differen-
tiable map

γ : (−ε, ε)→ X

for some ε > 0 such that γ(0) = x. We say that two paths are equivalent if they have the same
tangent vector in Rn for some chart (U,ϕ) around x. A tangent vector is an equivalence class of
paths. Let TxX be the set of tangent vectors of X in x.

The composition γ̄ = ϕ ◦ γ : (−ε, ε) → Rn is defined, possibly after making ε smaller. The
tangent vector is given by the formula

((ϕγ)′1(0), . . . , (ϕγ)′n).

If (V, ψ) is a second chart around x, then the chain rule expresses the tangent vector in ψ(V ) in
terms of the Jacobian of the transition morphism and the tangent vector in ϕ(U). In particular,
the equivalence relation is independent of the choice of chart.

There is a more elegant approach. Recall that a path defines a directional derivative.
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Definition 4.3.3. Let X be a smooth manifold, x ∈ X, γ a smooth path through x. Let
f : U → R be differentiable for some open neighbourhood of X. We put

∂γf := lim
h→0

f(γ(0 + h))− f(x)
h

= (f ◦ γ)′(0)

the derivative of f in the direction of γ.

Note that this definition does not mention charts! The differentiability assumptions on f and
γ make the composition a differentiable function, so the limit exists.

Lemma 4.3.4. Two paths define the same tangent vector at x if and only if, for all smooth
f : U → R, the directional derivatives agree.

Proof. Let γ1 and γ2 be equivalent paths. We choose a chart (V, ϕ) around x. By shrinking U
and V , we may assume that f is defined on V . For the rest of the argument, we may replace
X by ϕ(V ), f by the f ◦ ϕ−1 and γi by ϕ ◦ γi. This does not change the directional derivative.
Hence without loss of generality f : U → R for U ⊂ Rn. By the chain rule

∂γif =
( ∂f
∂x1

, . . . ,
∂f

∂xn

)
((γi)′1(0), . . . , (γi)′n(0))t.

Hence it only depends on the tangent vector, i.e., the equivalence class.
Conversely, assume that γ1 and γ2 define the same directional derivative for all f . Choose a

chart (U,ϕ) around x and consider the coordinate functions fj = xj ◦ ϕ. The tangent vector of
ϕ ◦ γi is given by the directional derivatives

(∂γif1, . . . , ∂γifn).

Hence γ1 and γ2 are equivalent.

So from now on, we think of tangent vectors as directional derivatives. They are maps. But
on what?

Definition 4.3.5. Let X be a smooth manifold, x ∈ X. Two smooth functions f1 : U1 → R,
f2 : U2 → R for open neighbourhoods Ui ⊂ R of x are called equivalent at x if there is an open
neighbourhood U ⊂ U1 ∩ U2 of x such that

f1|U = f2|U .

The equivalence class of f : U → R is called the germ (Keim) of f at x. We denote the set (even
R-algebra) of germs at x by Ax.

Remark 4.3.6. The ring Ax is local with maximal ideal mx consisting of the germs of functions
f with f(x) = 0. All other germs are invertible.

Remark 4.3.7. We can make the same definition for complex manifolds and holomorphic
functions. In this case two functions define the same germ if they have the same power series
expansion in some chart. The ring of germs is denoted Ox in this case.

Lemma 4.3.8. Let X be a smooth manifold, x ∈ X, γ a path through x. Then

∂γ : Ax → R

is well-defined and an R-derivation, i.e., R-linear and the Leibniz rule holds:

∂γ(fg) = f(x)∂γg + g(x)∂γf.

Proof. The definition of f ◦ γ does not change when making the neighbourhoods smaller. The
Leibniz rule holds because it holds for ordinary derivatives.

8



One advantage of this point of view: the set of R-derivations is a vector space!

Proposition 4.3.9. Let X be a smooth manifold of dimension n, x ∈ X. Then the set of
R-derivations is an R-vector space of dimension n. The map that assigns to an equivalence class
of paths its directional derivative is bijective.

Proof. Let (U,ϕ) be a chart. The claims for U and ϕ(U) are equivalent. Hence we can replace
X by an open subset V ⊂ Rn and x. Let x1, . . . , xn be the coordinate functions on V . The
directional derivative for the path (−ε, ε) → V mapping t to x + tei is the partial derivative
∂i := ∂

∂xi
. We claim that ∂1, . . . , ∂n is a basis for the space of derivations. This will prove the

dimension formula as well as surjectivity.
We start with linear independence. Let λ1, . . . , λn ∈ R such that

λ1∂1 + . . . λn∂n = 0

as maps Ax → R. The left hand side is equal to the directional derivative for the tangent vector∑
λiei. We have already shown that this implies vanishing of the tangent vector. As e1, . . . , en is

basis, this means that all λi vanish.
We now need to show that the ∂i generate the space of derivations. Let ∂ : Ax → R be a

derivation. Put
λi = ∂xi.

We claim that ∂ =
∑
λi∂i. Let f : V → R be smooth. Hence (Taylor expansion)

f(y) = f(x) +
∑
j

∂jf(x)(yj − xj) +
∑

gjk(yj − xj)(yk − xk)

with smooth functions gjk. We apply ∂ and
∑

(∂xi)∂i to the equation and use linearity and the
Leibniz rule. They vanish on the first and last summand and have the same effect on the second
summand.

We record further insights from the proof:

Corollary 4.3.10. (1) TxX is the dual vector space of mx/m
2
x.

(2) If (U,ϕ) is a chart, then for all x ∈ U , the directional derivatives ∂i = ∂γi with γi(t) =
ϕ−1(x+ tei) are a basis of TxX.

Definition 4.3.11. Let X be a smooth manifold of dimension n.
(1) We define the tangent bundle TX as the set

∐
x∈X TxX with π(v) = x for v ∈ TxX. For

every coordinate chart (U,ϕ) of X, we use the bijection

π−1(U)→ U × Rd, v =
n∑
i=1

λi(x)∂i 7→ (x, λ1(x), . . . , λn(x))

to define a topology and a smooth structure on TX.
(2) We define the cotangent bundle T ∗X as the dual vector bundle of TX.
(3) U ⊂ X open. A section s : U → TX (i.e., a smooth map satisfying π ◦ s = idU ) is called

tangent vector field. A section t : U → T ∗X is called differential form. Sections of ΛrT ∗X are
called differential forms of degree r.

Exercise 4.3.12. Let X and Y be smooth manifolds of dimensions m and n, respectively. The
product X × Y admits a unique smooth structure such that the projections X × Y → X and
X × Y → Y are smooth.

Exercise 4.3.13. Let X ⊂ Rn+1 be the manifold defined as the vanishing locus of a function
F : U → R for U ⊂ Rn+1 open such that the gradient of F is non-zero on X. Make the
identification of TxX with the space of directions tangent to X in Rn+1 explicit.
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Remark 4.3.14. Our proofs have given a natural identification T ∗xX = mx/m
2
x. If f : U → R

is smooth for U ⊂ X open, we get a differential form

df : x 7→ [f − f(x)].

Exercise 4.3.15. Check that df is smooth. As a first step show that on a coordinate chart
(U,ϕ) the cotangent vector dϕi(x) is the dual of the standard tangent vector ∂i.

4.4 Tangent bundles of complex manifolds

All constructions and definitions can be translated from the smooth to the holomorphic setting.
We replace paths defined on (−ε, ε) by holomorphic maps defined on an open disc D(0, ε). They
give rise to directional derivatives. They are examples of C-linear derivations. The set of C-linear
derivations can be identified with the dual of mx/m

2
x where this time mx ⊂ Ox. If (U,ϕ) is a

chart, then the standard basis on Cn gives rise to a basis ∂i of the tangent space. The tangent
bundle TX → X is a holomorphic vector bundle of rank equal to the complex dimension of X.

Remark 4.4.1. Let X be a complex manifold of dimension n. We denote by XR the underlying
smooth manifold. Then the holomorphic tangent bundle TX has complex dimension n and hence
real dimension 2n. The smooth tangent bundle TXR has real dimension 2n because XR has
dimension 2n. There is a actually a natural isomorphism of smooth vector bundles

(TX)R → TXR.

Given σ : D(0, ε)→ X, we have the path γ : (−ε, ε)→ D(0, ε)→ X. The bundle map is

∂σ 7→ ∂γ .

It is R-linear, but not complex linear.

Exercise 4.4.2. Write down the identification explicitly in the case X ⊂ C open.

Remark 4.4.3 (continued). The above identification has to be distinguished from a different
construction. Given a real vector bundle V → X for a smooth manifold X, we also have the
complex vector bundle V ⊗R C → X. In particular, there is the complexified tangent bundle
TX⊗RC. If X has real dimension m, then TX⊗RC has complex rank m and real rank 2m. This
can also be applied to the smooth manifold XR underlying a complex manifold X of dimension
n. Hence TX has complex rank n and TX ⊗R C has complex rank 2n.

4.5 Functoriality

Let ψ : X → Y be a smooth morphism, x ∈ X. We define dψx : TxX → Tψ(x)Y as follows: fix
∂ ∈ TxX. Let f ∈ Aψ(x) be represented by f : U → R for U ⊂ X an open neighbourhood of
ψ(x). Then f ◦ ψ : ψ−1U → R defines an element of Ax. The map

f 7→ ∂(f ◦ ψ)

is a derivation on Aψ(x). We have found a linear map as we wanted.

Definition 4.5.1. Let f : X → Y be a smooth morphism. We call

df : TX → TY

the induced morphism on tangent bundles.

Remark 4.5.2. df is indeed a morphism of bundles: linear on fibres and smooth.
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Proposition 4.5.3. The assignments X 7→ TX and f 7→ df define a functor from the category
of smooth manifolds and smooth maps to itself. In other words:

(1) for each smooth manifold X, idTX = d(idX) : TX → TX; and
(2) if f : X → Y and g : Y → Z are smooth maps of smooth manifolds, then d(g◦f) = df ◦dg

as maps TX → TZ.
In particular, if f : X → Y is a diffeomorphism, then df is an isomorphism.

Definition 4.5.4. Let f : X → Y be a smooth map of smooth manifolds and let x ∈ X. The
rank rkx(f) of f at x is the rank of the R-linear map dfx : TxX → Tf(x)Y . We say that f is of
constant rank if x 7→ rkx(f) : X → Z≥0 is a constant function.

Remark 4.5.5. The rank rkx(f) of a smooth map of smooth manifolds f : X → Y is bounded
above by min(dim(X),dim(Y )): indeed, dim(X) = dim(TxX), dim(Y ) = dim(Tf(x)Y ), and the
image of dfx is both a quotient of TxX and a subspace of Tf(x)Y .

Proposition 4.5.6. Let f : X → Y be a smooth map of smooth manifolds, let x ∈ X, and let
r := rkx(f). There exists an open neighborhood x ∈ U ⊆ X such that rkx′(f) ≥ r for each x′ ∈ U .

Proof. The question is local on X and on Y . We may therefore assume without loss of generality
that X ⊆ Rm and Y ⊆ Rn are open subsets. At each point x′ ∈ X, dfx is represented by
the Jacobian matrix with respect to the standard bases, and the condition that rkx′(f) ≥ r is
precisely the condition that the Jacobian matrix of f at x′ is of rank ≥ r.

As f is smooth, its partial derivatives and, hence, its Jacobian matrices vary continuously.
Using this continuity, it suffices to show that the set of points x′ ∈ X at which the Jacobian
matrix of f is of rank ≥ r is open in the set of all n×m matrices.

To say that an n×m matrix M is of rank ≥ r is to say that there exists an r × r submatrix
M ′ of M such that det(M ′) 6= 0. The determinant is a polynomial in the entries of a matrix, so
the determinant function is continuous. Thus, the nonvanishing of the determinant is an open
condition. The condition that a matrix be of rank ≥ r is therefore also an open condition.

4.6 Immersions, embeddings, and submanifolds

Definition 4.6.1. Let f : X → Y be a smooth morphism.
(1) f is called an immersion if dfx is injective for all x ∈ X.
(2) X is a submanifold if f is injective and an immersion.
(3) f is an embedding if it is an immersion and f is a homeomorphism onto its image f(X).

There are nasty counterexamples saying that the three conditions are not equivalent. They
are a phenomenon of real analysis. In the holomorphic category they do not occur.

Example 4.6.2. Let m,n ∈ Z≥0. The inclusion x 7→ (x, 0) : Rm → Rm+n is an embedding. We
will see later ([add reference]) that every immersion is locally of this form in a suitable sense.

Exercise 4.6.3. Show that S1 ⊂ R2 is an embedding.

Example 4.6.4. The map f : x 7→ x3 : R→ R is a homeomorphism. By [add reference], dfx is
given by multiplication by f ′(x) = 3x2, so df0 is the zero map. The map f is therefore not an
immersion.

Example 4.6.5. Consider the map f : x 7→ (cos(x), sin(x)) : [0, 2π) → R2. By [add reference],
dfx is represented by the Jacobian matrix[

− sin(x)
cos(x)

]
.
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As sin(x) and cos(x) do not vanish simultaneously, dfx is injective for each x ∈ [0, 2π), and f
is therefore an immersion. The image of f is the unit circle S1 ⊆ R2, which is a quasi-compact
subspace by [add reference]. The domain [0, 2π), however, is not quasi-compact by the Heine-
Borel Theorem (Theorem 1.3.33). Thus, the map f cannot be a homeomorphism onto its image:
quasi-compactness, like all toplogical properties, is homeomorphism invariant.

4.7 Submersions

Definition 4.7.1. A smooth morphism f : X → Y is a submersion if dfx is surjective for each
x ∈ X.

Example 4.7.2. Let m,n ∈ Z≥0. The projection (x, y) 7→ x : Rm+n → Rm is a submersion. We
will see later ([add reference]) that every submersion is locally of this form in a suitable sense.

Definition 4.7.3. Let X be a topological space. It is a topological manifold with boundary
(with corners) if it is Hausdorff and second countable and every point of x has a neighbourhood
homeomorphic to an open subset of Rn−1 × R≥0 (of Rn≥0, respectively).

As in the case without boundary, we have the notion of an equivalence class of atlases by
imposing that the transition maps are smooth. Recall that we called a map A → B between
subsets of Rn and Rm smooth if it extends to a smooth function on an open neighbourhood of A.

Exercise 4.7.4. Let X be a compact manifold with boundary, ω a smooth differential form on
X. Look up and understand the Theorem of Stokes:∫

X
dω =

∫
∂X

ω.

What does it say for X = [a, b] ⊂ R?
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