
Topology of algebraic varieties

Brad Drew and Annette Huber

Wintersemester 2019/2020

Contents
2 Analytic functions 1

2.1 Formal power series and analytic functions . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Differentiability of real functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Differentiability of complex functions . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Complex-differentiability of analytic functions . . . . . . . . . . . . . . . . . . . . 6
2.5 Implicit function theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Key theorems of complex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Analytic functions
Motivation. In this chapter, we turn our attention to complex-analytic functions. For the
purposes of this course, the fundamental properties of complex-analytic functions are the following:

(1) Complex-analytic functions are holomorphic, i.e., complex differentiable.
(2) Complex-analytic functions are smooth functions when regarded as real-valued functions.
(3) Complex-analytic functions satisfy the Implicit and Inverse Function Theorems.
(4) Local complex-analytic isomorphisms are orientation-preserving maps: when regarded as

real-valued maps, their Jacobian matrices define C-linear morphisms.

2.1 Formal power series and analytic functions

Much of this section follows the exposition of [Lan99, Chapter II].

Formal power series

Definition 2.1.1. Let a = (a1, . . . , an) ∈ Cn and let t = (t1, . . . , tn) be indeterminates. A
formal power series in t centered at a is an expression of the form

(2.1.1.a) f(t1, . . . , tn) =
∑

(r1,...,rn)∈Zn
≥0

cr1,...,rn(t1 − a1)r1 · · · (tn − an)rn ,

where cr1,··· ,rn ∈ C for each (r1, . . . , rn) ∈ Zn≥0. We refer to the cr1,...,rn as the coefficients of the
power series.

Remark 2.1.2. The qualifier “formal” in the expression “formal power series” indicates that
the series is not required to converge in any sense: it has a purely symbolic meaning.

Notation 2.1.3. We denote by CJz1, . . . , znK the set of formal power series in z1, . . . , zn centered
at 0.
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Remark 2.1.4. To be precise, when we speak of the convergence of the series f(t1, . . . , tn) of
(2.1.1.a) for some value (t1, . . . , tn) ∈ Cn, we shall mean that the total-degree partial sums

sk :=
∑

|r1,...,rn|≤k
cr1,...,rn(t1 − a1)r1 · · · (tn − an)rn

form a convergent sequence (sk)k∈Z≥0
, where |r1, . . . , rn| := r1 + · · · rn is the total degree. For our

purposes, we will consider in practice only absolutely convergent series, and we could therefore
replace the total-degree-partial-sum sequence by the sequence associated with any other ordering
of the summands of the series (2.1.1.a).

Definition 2.1.5. Let X ⊆ Cn.
(1) We say that the formal power series (2.1.1.a) converges absolutely on X if, for each

(z1, . . . , zn) ∈ X, the series

(2.1.5.a)
∑

(r1,...,rn)∈Zn
≥0

|cr1,...,rn(z1 − a1)r1 · · · (zn − an)rn |

converges.
(2) We say that the formal power series (2.1.1.a) converges uniformly absolutely on X if the

series (2.1.5.a) converges uniformly on X. Recall that a sequence of functions (fn : X → C)n∈Z≥0
converges uniformly to f : X → C if, for each ε ∈ R>0, there exists N ∈ Z≥0 such that, for each
n ≥ N , |fn(x)− f(x)| < ε.

Notation 2.1.6. We denote by C{z1, . . . , zn} ⊆ CJz1, . . . , znK the subset consisting of formal
power series in z1, . . . , zn centered at 0 that converge absolutely in a neighborhood of 0.

Example 2.1.7. Let z = (z1, . . . , zn) ∈ Cn. The geometric series with ratio z is the formal
power series

(2.1.7.a)
∑

(r1,...,rn)∈Zn
≥0

zr1
1 · · · z

rn
n

We claim that this series is uniformly absolutely convergent on each quasi-quasi-compact subset
K ⊆ D(0, 1)n. There exists 0 ≤ r < 1 such that K ⊆ D̄(0, r)n, and D̄(0, r)n is quasi-compact by
Theorem 1.3.33, so we may assume without loss of generality that K = D̄(0, r)n.

For each z = (z1, . . . , zn) ∈ D̄(o, r)n, if the iterated series∑
rn

· · ·
∑
r1

zr1
1 · · · z

rn
n =

∑
rn

(∑
rn−1

· · ·
∑
r1

zr1
1 · · · z

rn−1
n−1

)
zrn
n

converges absolutely on K, then (2.1.7.a) converges absolutely to the same value. By induction
on n, the iterated series is given by∑

rn

· · ·
∑
r2

(∑
r1

zr1
1

)
zr2

2 · · · z
rn−1
n−1 z

rn
n =

(∑
r1

zr1
1

)(∑
rn

· · ·
∑
r2

zr2
2 · · · z

rn−1
n−1 z

rn
n

)

=
(∑
r1

zr1
1

)(∑
r2

zr2
2

)
· · ·
(∑
rn

zrn
n

)
on K. By the well-known case in which n = 1, this is a product of finitely many series converging
uniformly absolutely on K, so, by [add reference], it converges uniformly absolutely on K to the
value

1
(1− z1) · · · (1− zn) .

Proposition 2.1.8. Let a ∈ C, let cn ∈ C for each n ∈ Z≥0, let f(z) :=
∑
n∈Z≥0

cn(z − a)n be
the associated formal power series, and let L := lim supn→∞|cn|

1
n .
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(1) If L =∞, then f(z) converges absolutely uniformly at z = a and diverges at each other
point z ∈ C.

(2) If 0 < L <∞, then f(z) converges uniformly absolutely on D(a, r), where r := L−1.
(3) If L = 0, then f(z) converges uniformly absolutely on C.

Proof. See [Lan99, Chapter II, Theorem 2.6].

Remark 2.1.9. We will establish a less precise but more general result in the several-variable
case Lemma 2.1.10.

Lemma 2.1.10 (Abel). Consider a formal power series of the form (2.1.5.a). Let (w1, . . . , wn) ∈
Cn, let M ∈ R>0, and suppose that

|cr1,...,rn(w1 − a1)r1 · · · (wn − an)rn | < M

for each (r1, . . . , rn) ∈ Zn≥0. The series f(z1, . . . , zn) converges uniformly absolutely on each
quasi-compact subset K of the polydisk D := D(a1, ρ1)× · · · ×D(an, ρn), where ρk := |wk − ak|
for each 1 ≤ k ≤ n.

Proof. Let K be a quasi-compact subset of D. We may assume without loss of generality that
ρk > 0 for each 1 ≤ k ≤ n, or else D = ∅ and the claim is vacuous. As K ⊆ D, we have

(2.1.10.a) δk := sup
(z1,...,zn)∈K

|zk − ak|
ρk

< 1

for each 1 ≤ k ≤ n. Thus, for each (z1, . . . , zn) ∈ K and each (r1, . . . , rn) ∈ Zn≥0, we have

|cr1,...,rn(z1 − a1)r1 · · · (zn − an)rn | ≤ |cr1,...,rn |ρ
r1
1 · · · ρ

rn
n δ

r1
1 · · · δ

rn
n ≤Mδr1

1 · · · δ
rn
n

By (2.1.10.a), δk < 1 for each 1 ≤ k ≤ n, so the geometric series
∑

(r1,...,rn)Mδr1
1 · · · δrn

n converges
absolutely as observed in Example 2.1.7.

Analytic functions

Definition 2.1.11. Let U ⊆ Cn be an open subset.
(1) Let a = (a1, . . . , an) ∈ U . We say that the function f : U → C is analytic at a if there

exists an open neighborhood a ∈ V ⊆ U and a power series expansion

f(z) =
∑

(r1,...,rn)∈Zn
≥0

cr1···rn(z1 − a1)r1 · · · (zn − an)rn

with complex coefficients converging uniformly absolutely in each quasi-compact subset of V .
(2) We say that the function f : U → C is analytic on U if it is so at each a ∈ U .
(3) We say that the function f = (f1, . . . , fm) : U → Cm is analytic on U if fk is analytic on

U for each 1 ≤ k ≤ m.

Exercise 2.1.12. If f : U → C is an analytic function on the open subset U ⊆ Cn, then f is
continuous. [Hint: Uniform convergence.]

Exercise 2.1.13. Let U ⊆ Cn and V ⊆ Cm be open subsets.
(1) If f, g : U → Cm are analytic on U , then so is f + g.
(2) If f, g : U → Cm are analytic on U , then so is f · g.
(3) If f : U → V and g : V → Ck are analytic on U and V , respectively, then g ◦ f : U → Ck

is analytic on U .
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2.2 Differentiability of real functions

Definition 2.2.1. Let X ⊆ Rn, let f : X → Rm be a function, and let x ∈ X.
(1) If X is open in Rn, then we say that f is differentiable at x if there exists an R-linear

map dfx : Rn → Rm such that

(2.2.1.a) lim
h→0

f(x+ h)− f(x)− dfx(h)
|h|

= 0

More precisely, this notation means that, for each ε ∈ R>0, there exists δ ∈ R>0 such that

f(x+ h)− f(x)− dfx(h)
|h|

∈ D(0, ε)

for each h ∈ Rn − {0} such that x+ h ∈ D(0, δ).
(2) We say that f is differentiable on X if it is so at each x ∈ U .
(3) More generally, we say that f is differentiable on X if, for each x ∈ X, there exists

an open subset U ⊆ Rn containing x and a differentiable function F : U → Rm such that
F |X∩U = f |X∩U .

(4) If f is differentiable at x, then we refer to the R-linear map dfx of (1) as the differential
of f at x, and we refer to its matrix with respect to the standard bases as the Jacobian matrix
Jf (x) of f at x.

Remark 2.2.2. If X ⊆ Rn and f : X → R is differentiable at x ∈ X, then the Jacobian matrix
Jf (x) is of the form

Jf (x) =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂Xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
... . . . ...

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xn

(x),

where fr : Rn → R is the composite of f with the projection Rm → R onto the rth coordinate
for 1 ≤ r ≤ m.

Definition 2.2.3. Let X ⊆ Rn, let f = (f1, . . . , fm) : X → Rm be a function, and let k ∈ Z≥0.
(1) If X is open in Rn, then we say that f is of continuity class Ck or that f is a Ck-function

if, for each integer 1 ≤ s ≤ m, for each integer 0 ≤ r ≤ k, and for each partition r = r1 + · · ·+ rn,
the partial derivative

∂rfs
(∂x1)r1 · · · (∂xn)rn

exists and is continuous on X. By convention, if k = 0, this condition means precisely that fs is
continuous for each 1 ≤ s ≤ m.

(2) For an arbitrary subspace X ⊆ Rn, we say that f is of continuity class Ck or that f is a
Ck-function if, for each x ∈ X, there exist an open subset U ⊆ Rn containing x and a Ck-function
F : U → R such that F |X∩U = f |X∩U .

(3) We say that f is smooth or that f is a C∞-function if it is a Ck-function for each k ≥ 0.

Proposition 2.2.4. If X ⊆ Rn and f : X → Rm is a C1-function, then f is differentiable in
the sense of Definition 2.2.1.(3).

2.3 Differentiability of complex functions

Definition 2.3.1. The standard bijection R2n → Cn is the bijection R2n ∼→ Cn given by

(x1, y1, . . . , xn, yn) 7→ (x1 + iyn, . . . , xn + iyn).
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We let νn : Cn → R2n denote the inverse bijection, and we also refer to it as the standard
bijection.

Definition 2.3.2. Let X ⊆ Cn, let f : X → Cm be a function, and let k ∈ Z≥0 ∪ {∞}. We say
that f is of continuity class Ck or that f is a Ck-function if the composite

νn(X) ν−1
n−−→ X

f−→ Cm νm−−→ R2m

is a Ck-function, where νn and νm are the standard bijections of Definition 2.3.1.

Definition 2.3.3. Let X ⊆ Cn be a subset, let a = (a1, . . . , an) ∈ X, and let f : X → C be a
function.

(1) Suppose that X is open and that n = 1. We say that f is complex differentiable at a if
the limit

(2.3.3.a) f ′(a) := lim
z→a

f(z)− f(a)
z − a

exists. In other words, f is complex differentiable at a if there exists f ′(z) ∈ C such that, for
each ε ∈ R>0, there exists δ ∈ R>0 such that, for each z ∈ D(a, δ), we have

f(z)− f(a)
z − a

∈ D(f ′(a), ε).

(2) Suppose thatX is open. Let z1, . . . , zn denote the standard coordinate functions on Cn and
let 1 ≤ r ≤ n. By Exercise 1.1.4, for some ε1, . . . , εn ∈ R>0, the polydisk D(a1, ε1)×· · ·×D(an, εn)
is contained in X. We say that f is complex differentiable at z with respect to the coordinate zk if
the composite

D(ak, εr)
ιk−→ D(a1, ε1)× · · · ×D(an, εn) ↪→ X

f−→ C
is complex differentiable at ar, where ιk(z) = (a1, . . . , ak−1, z, ak+1, . . . , an). In other words, f is
complex differentiable at a with respect to zk if the single-variable function

z 7→ f(a1, . . . , ak−1, z, ak+1, . . . , an) : D(ak, εk)→ C

is holomorphic at ak.
(3) Suppose that X is open. We say that f is complex differentiable at a if it satisfies the

following conditions:
(a) f is continuous at z; and
(b) f is complex differentiable at a with respect to each of the variables z1, . . . , zn.

(4) We say that f is complex differentiable if it is so at each a ∈ X.
(5) If X is an arbitrary subset, then we say that f is complex differentiable if, for each a ∈ X,

there exist an open subset U ⊆ Cn containing a and a complex differentiable function F : U → C
such that F |X∩U = f |X∩U .

Definition 2.3.4. Let X ⊆ Cn. A function f : X → C is holomorphic if it is complex differen-
tiable on X.

Remark 2.3.5. As we will see in Proposition 2.4.4, each analytic function is complex differen-
tiable. Conversely, as we will see in Theorem 3.3.8, each complex-differentiable function is analytic.
One may therefore employ the terms “analytic”, “complex differentiable”, and “holomorphic”
interchangeably.

Of the two implications, the former (Proposition 2.4.4) is rather formal, and it is also this
one that will be of use to us. The converse implication (Theorem 3.3.8) is a much more profound,
although the most interesting ingredients are contained in the single-variable version of the Cauchy
integral formula. The generalization to several variables is straightforward. This implication will
not play a determinative role in the sequel, but it is valuable cultural knowledge and we include
a comprehensive discussion for the sake of completeness.
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Remark 2.3.6. A deep theorem due to Hartogs ([Har06]) implies that Condition 2.3.3.(3).(b)
implies Condition 2.3.3.(3).(a): each function f : U → C that is complex differentiable separately
with respect to each variable is necessarily continuous. We will not appeal to this result in the
sequel.

Example 2.3.7. The functions Re: C → R and Im: C → R are of continuity class C∞ but
neither of them is complex differentiable: their partial derivatives in the directions of the real
and imaginary axes exist and are continuous to all orders, but they are not equal:

∂ Re
∂x

= 1 6= 0 = ∂ Re
∂y

and ∂ Im
∂x

= 0 6= −i = ∂ Im
∂y

,

where x is the real-axis coordinate function and y the imaginary-axis coordinate function.

2.4 Complex-differentiability of analytic functions

Proposition 2.4.1. Let U ⊆ C be an open subset and let f, g : U → C be complex differentiable
functions.

(1) The sum f + g is complex differentiable with derivative f ′ + g′.
(2) The product fg is complex differentiable with derivative f ′g + fg′.
(3) If g does not vanish on U , then the quotient f/g is complex differentiable with derivative

(f ′g − fg′)/g2.

Proof. The proof of each assertion is essentially identical to the proof of the analogous assertion
for real-differentiable functions in real analysis, proceeding by manipulation of the relevant
difference quotients (2.3.3.a). See [Lan99, Chapter I, §5] for the details.

Proposition 2.4.2. Let U, V ⊆ C be open subsets and let f : U → V and g : V → C be complex-
differentiable functions. The composite g ◦ f : U → C is complex differentiable with derivative
(g′ ◦ f)f ′.

Proof. The proof is once again essentially identical to the proof of the analogous assertion for
real-differentiable functions, proceeding by manipulation of the relevant difference quotients
(2.3.3.a). See [Lan99, Chapter I, §5] for the details.

Example 2.4.3. The function z 7→ z : C → C is complex differentiable by inspection of the
limit (2.3.3.a). By Proposition 2.4.1, it follows that each rational function f : U → C defined on
an open subset U ⊆ Cn is complex differentiable.

Proposition 2.4.4. Let U ⊆ Cn be an open subset. If f : U → C is an analytic function, then
f is complex differentiable.

Proof. Let w ∈ U , and assume that f admits a power-series representation

f(z) =
∑
n≥0

an(z − ζ)n

centered at ζ in some open neighborhood of w. The map

ϕ : z 7→ z + ζ : C→ C

is a biholomorphism, and the composite of two complex-differentiable functions is complex
differentiable by Proposition 2.4.2. Replacing f by f ◦ ϕ and w by w − ζ, we may therefore
assume without loss of generality that f admits a power-series representation

(2.4.4.a) f(z) =
∑
n≥0

anz
n
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centered at 0 in some neighborhood V of w. Choose r ∈ R>0 such that D(w, r) ⊆ V . It suffices
to prove the following assertions:

(1) the series
g(z) :=

∑
n≥0

nanz
n−1

converges on D(w, r); and
(2) for each z ∈ D(ζ, r), we have

0 = lim
h→0

(
f(z + h)− f(z)

h
− g(z)

)
.

Consider Claim 2.4.4. Let R denote the radius of convergence of the power series in (2.4.4.a).
In particular, we have R ≥ r.

2.5 Implicit function theorem

This section follows the treatment of [ZS75, pp. 139-145].

Formal implicit function theorem

Remark 2.5.1. The Cauchy product of two power series in the variable z is given by

(2.5.1.a)
( ∑
r∈Z≥0

arz
r
)
·
( ∑
s∈Z≥0

bsz
s
)

=
∑
s∈Z≥0

( s∑
r=0

arbs−r

)
zs.

Lemma 2.5.2. Consider a complex formal power series of the form

(2.5.2.a) f(z1, . . . , zn) =
∑

(r1,...,rn)∈Zn
≥0

cr1,...,rnz
r1
1 · · · z

rn
n .

If f(0, . . . , 0) 6= 0, then there exists a unique formal power series g(z1, . . . , zn) such that f · g = 1.

Proof. We proceed by induction on n. If n = 0, then the claim is vacuous. Let n > 0 and write f
in the form

f(z1, . . . , zn) =
∑

r∈Z≥0

ar(z1, . . . , zn−1)zrn,

where ar(z1, . . . , zn−1) is a formal power series in z1, . . . , zn−1. In particular, we have

a0(0, . . . , 0) = f(0, . . . , 0) 6= 0.

The inductive hypothesis therefore implies that a0 admits a multiplicative inverse as a formal
power series in z1, . . . , zn−1. Replacing f by c−1

0,...,0f , we may assume without loss of generality
that f(0, . . . , 0) = 1. By (2.5.1.a), we seek a formal power series

g(z1, . . . , zn) =
∑
s∈Z≥0

bs(z1, . . . , zn−1)zsn

satisfying the relations

δ0s =
s∑
r=0

ar(z1, . . . , zn−1)bs−r(z1, . . . , zn−1),

where δ0s is the Kronecker symbol. We solve for the coefficients bs recursively as follows. For
s = 0, we have the unique solution b0 = a−1

0 . For s > 0, we have

0 =
s∑
r=0

arbs−r ⇒ a0bs = −
s∑
r=1

arbs−r ⇒ bs = −a−1
0

s∑
r=1

arbs−r,

and this solution is unique.

7



Theorem 2.5.3 (Formal implicit function theorem). Consider a complex formal power se-
ries (2.5.2.a) such that c0,...,0 = 0 and c0,...,0,1 6= 0. There exist a unique formal power series
u(z1, . . . , zn) and a unique formal power series r(z1, . . . , zn−1) such that

(2.5.3.a) uf = zn − r

and u(0, . . . , 0) 6= 0.

Proof. Observe that, if there exist formal power series u ∈ CJz, wK and r ∈ CJzK such that
uf = w − r, then the constant term of u is nonzero, and u is therefore invertible. Indeed, if not,
then uf contains no nonzero linear terms, as the constant term of f is zero. This contradicts the
fact that zn − r contains the nonzero linear term zn, as r is a power series in z1, . . . , zn−1.

The set of complex formal power series in z1, . . . , zn forms a complex vector space with
respect to the evident addition and scalar-multiplication operations. We will switch to a mixed
multi-index notation with z = (z1, . . . , zn−1) and w = zn. We have a C-linear morphism

R :
∑
r

cr(z)wr 7→ c0(z) : CJz, wK→ CJzK,

where we identify elements of CJz, wK with formal power series in the single variable w with
coefficients cr(z) ∈ CJzK.

We also have a C-linear morphism

H : p 7→ (p−R(p))w−1 : CJz, wK→ CJz, wK.

In terms of coefficients, H is given by

H

(∑
r≥0

cr(z)wr
)

=
∑
r>0

cr(z)wr−1.

In particular, we have the relation

(2.5.3.b) p = wH(p) +R(p)

for each p ∈ CJz, wK.
It suffices to find a formal power series u in z such that

(2.5.3.c) 0 = 1− uH(f)−H(uR(f)).

Indeed, this follows from the equalities

H(w − uf) = H(w)−H(uf) additivity of H
= 1−H(uf) definition of H
= 1−H(uwH(f) + uR(f)) (2.5.3.b)
= 1−H(uwH(f))−H(uR(f)) additivity of H
= 1− (uwH(f)−R(uwH(f)))w−1 −H(uR(f)) definition of H
= 1− uH(f)−H(uR(f)) definition of R

and the observation that, by (2.5.3.b), 0 = H(w − uf) implies that R(w − uf) = w − uf is a
formal power series in w, and we have w = uf + (w − uf), so u and r := w − uf satisfy the
required relation uf = w − r.

For the sake of brevity, we set

µ := −R(f)H(f)−1.
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By Lemma 2.5.2, the hypothesis that c0,...,0,1 6= 0 implies that H(f) admits a multiplicative
inverse in CJz, wK. It therefore suffices to find a formal power series v in z such that

0 = 1− v +H(µv).

substituting u = vH(f)−1 into (2.5.3.c). Equivalently, we seek a formal power series v in z such
that

(2.5.3.d) v = 1 +M(v),

where M is the C-linear map

M : p 7→ H(µp) : CJz, wK→ CJz, wK.

By linearity of M , our solution v must satisfy

v = 1 +M(v) = 1 +M(1 +M(v)) = 1 +M(1) +M2(v).

Applying (2.5.3.d) recursively, our solution must therefore satisfy

(2.5.3.e) v = 1 +M(v) + · · ·+Mk+1(v)

for each k ∈ Z≥0.
The hypothesis that c0,...,0 = 0 implies that the constant term of R(f) is zero. It follows that,

if p ∈ CJz, wK is a formal power series whose nonzero terms are divisible by at least one of the
monomials

(2.5.3.f) zα1
1 · · · z

αn−1
n−1

of total degree ≥ r, i.e., with (α1, . . . , αn−1) ∈ Zn−1
≥0 such that

∑
k αk ≥ r, then each nonzero

term of M(p) is divisible by at least one of the monomials (2.5.3.f) of total degree ≥ r + 1. In
particular, it follows by induction that a monomial of the form (2.5.3.f) of total degree ≥ k
divides each nonzero constant term of Mk(1). It follows that formal power series of formal power
series

(2.5.3.g) v =
∑

k∈Z≥0

Mk(v)

converges to a formal power series in CJz, wK.
By (2.5.3.e), each solution v must satisfy the relation (2.5.3.g), so the solution v is unique if

it exists.
Let us show that (2.5.3.g) is indeed a solution. Let k ∈ Z≥0. We have

v = 1 +M(1) + · · ·+Mk(1) +Wk,

where we regard Wk is regarded as a power series in w with coefficients in CJzK. By our previous
observation, each nonzero term of Wk is divisible by a monomial (2.5.3.f) of total degree ≥ k+ 1.
For each k ∈ Z≥0, we have

v − 1−M(v) =
(
Wk +

k∑
`=0

M `(1)
)
− 1−

(
M(Wk) +

k+1∑
`=1

M `(1)
)

= Wk −Mk+1(1)−M(Wk).

It follows that each nonzero term of v − 1−M(v) is divisible by a monomial (2.5.3.f) of total
degree ≥ k + 1. As this is true for each k ∈ Z≥0, it follows that v − 1−M(v) = 0.

Remark 2.5.4. Explain why this is an implicit function theorem.
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Analytic implicit function theorem

Theorem 2.5.5 (Single-variable analytic inverse function theorem). Let U ⊆ C be an open
subset, let f : U → C be an analytic function on U , and let a ∈ U . If f is analytic at a with
power series expansion

f(z) =
∑

n∈Z≥0

cnz
n

and the coefficient c1 is nonzero, then f admits a local analytic inverse function at a.

Proof. We will give a proof of the several-variable analogue of this statement later. In the
single-variable case, it is not difficult to write down a formal inverse power series and check that
it converges near a. See [Lan99, Chapter II, Theorem 6.1] for details.

2.6 Key theorems of complex analysis

Much of this section follows the exposition of [Lan99, Chapter II] and [Sch05, §1.2.2].

Lemma 2.6.1. Let U ⊆ Cn be an open subset, let z ∈ U , let w ∈ Cn, and let

V := {c ∈ C | z + cw ∈ U} ⊆ C.

(1) The subset V is an open neighborhood of 0.
(2) For each analytic function f : U → C an analytic function, the function g : V → C given

by g(c) = f(z + cw) is analytic.

Proof. Consider Claim (1). The element z = z + 0 · w belongs to U , so 0 ∈ V . Translating
everything by −z, we may assume without loss of generality that z = 0. In this case, V is the
preimage of the open set U under the continuous map t 7→ tw : C→ Cn.

Consider Claim (2). The map t 7→ z + tw is analytic, and g is the composite of this map with
the analytic function f , and is therefore itself analytic.

Theorem 2.6.2 (Identity theorem). Let ∅ 6= V ⊆ U ⊆ Cn be open subsets and assume that U
is connected.

(1) If f : U → C is an analytic function such that f |V = 0, then f = 0.
(2) If f, g : U → C are analytic functions such that f |V = g|V , then f = g.

Proof. The two assertions are equivalent: on the one hand, Claim (2) follows from Claim (1) as
the difference f − g is analytic if f and g are (Exercise 2.1.13.(1)), so Claim (1) implies that
f − g = 0; on the other hand, Claim (1) is the special case of Claim (2) in which g = 0. We shall
prove Claim (1).

The topological space C is Hausdorff by Example 1.3.15, so the singleton {0} ⊆ C is closed.
By Exercise 2.1.12, f is continuous. The preimage Z̄ := f−1({0}) ⊆ U is therefore closed.
Let Z denote the interior of Z̄, which is open (Definition 1.1.12.(2)). We will show that the
complement ∂Z = Z̄ − Z is empty and, hence, that Z is also closed. As Z is therefore open,
closed, and nonempty by virtue of the inclusion V ⊆ Z, connectedness of U implies that Z = U
(Proposition 1.3.4) and, hence, that f = 0.

Suppose for contradiction that a ∈ ∂Z. By Exercise 1.1.4, we may choose an open polydisk D
centered at a and contained in U . It suffices to show that D ⊆ Z and, hence, that a ∈ ∂Z ∩D ⊆
∂Z ∩ Z = ∅.

As D is open, in order to show that D ⊆ Z, it suffices to show that f(z) = 0 for each
z ∈ D. The open subset D of U meets the boundary ∂Z, so it also meets the interior Z by
Proposition 1.1.14. Let w ∈ D ∩ Z and let z ∈ D. The subset

W := {c ∈ C | w + c(z − w) ⊆ U} ⊆ C
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is open by Lemma 2.6.1.(1), and the function

g : t 7→ f(w + t(z − w)) : W → C

is analytic by Lemma 2.6.1.(2). By definition of Z, f vanishes identically on an open neighborhood
of w, so g vanishes identically on the preimage of this open neighborhood in W , which is an open
neighborhood of 0. By Exercise 1.1.6, D is convex, so [0, 1] ⊆W , and, by Proposition 1.3.2, [0, 1]
is connected. By the identity theorem for single-variable analytic functions, g is thus identically
zero on [0, 1]. Thus, g(1) = f(w + 1 · (z − w)) = f(z) = 0, as required.

Theorem 2.6.3 (Liouville). If f : Cn → C is a bounded, analytic function, then f is constant.

Proof. Let z, w ∈ Cn. Consider the function h : C→ Cn given by c 7→ z + cw. This function is
affine and a fortiori analytic, so the composite g := f ◦ h is analytic. The image of g is contained
in the image of f , so g is bounded. By the single-variable Liouville Theorem, g is constant, so we
have

f(z) = g(0) = g(1) = f(w),

which shows that f is also constant.

Theorem 2.6.4 (Maximum modulus principle). Let U ⊆ Cn be a connected open subset, let
f : U → C be an analytic function, let a ∈ U . If |f(a)| ≥ |f(z)| for each z in an open neighborhood
a ∈ V ⊆ U , then f is constant on U .

Proof. By the Identity Theorem (Theorem 2.6.2.(2)), if f is constant on V , then f is also constant
on U , so it suffices to show that f is constant on V . We may furthermore replace V by an open
polydisk

D = D(a1, r1)× · · · ×D(an, rn)

centered at a contained in V . The function

z1 7→ f(z1, a2, . . . , an)

is analytic as a composite of analytic functions, and its modulus attains its maximum at a1. The
function f1 is therefore constant on D(a1, r1) with value f(a) by the single-variable maximum
modulus principle.

Suppose that the function

(z1, . . . , zk) 7→ f(z1, . . . , zk, ak+1, . . . , an)

is constant on D(a1, r1) × · · · × D(ak, rk) for some 1 ≤ k < n. For each (w1, . . . , wk) in this
polydisk, the function

zk+1 7→ f(w1, . . . , wk, zk+1, ak+2, . . . , an)

is analytic on D(ak+1, rk+1) and its modulus attains its maximum at ak+1, so the function is
constant with value f(a) on this disk. By induction, f is constant on the polydisk.

Theorem 2.6.5 (Open Mapping Theorem). Let U ⊆ Cn be a connected open subset and let
f : U → C be a nonconstant analytic function. For each open subset V ⊆ U , the image f(V ) ⊆ C
is open.

Proof. Let z = (z1, . . . , zn) ∈ V and let w = f(z). We will construct an open neighborhood of
w contained in f(V ) and the claim will follow. By Exercise 1.1.4, as V is open, there exists a
polydisk D centered at z and contained in V . As V is covered by such polydisks, and as open
sets are stable under arbitrary unions, we may assume without loss of generality that V = D.
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As f is nonconstant, we may choose z′ ∈ D such that f(z) 6= f(z′). As in Lemma 2.6.1,
consider the open neighborhood

W := {c ∈ C | z + c · (z′ − z) ∈ D}

of the origin in C, and the analytic map h : c 7→ z + cz′ : W → D. The composite g := f ◦ h is
analytic and nonconstant by construction. By the single-variable Open Mapping Theorem, g is
an open map. In particular, the image of g is an open neighborhood of w contained in f(D), as
required.
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