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11 Nori’s basic lemma

11.1 Nori’s approach

We have often used the fact that every cell complex has a skeletal filtration, i.e.,

Y0 ⊂ Y1 ⊂ · · · ⊂ Yn = Y

such that

H i(Yj , Yj−1) =
{
ZN i = j

0 i 6= j

We have seen that affine algebraic varieties are homotopy equivalent to a cell complex, so they
admit a skeletal filtration. Surprisingly, this filtration can be realised by affine subvarieties
(defined over the ground field if we are working over fields different from C).

Theorem 11.1.1 (Basic Lemma (Nori 2002, Beilinson 1987, Vilonen ?)). Let X ⊂ An be an
affine variety, Z ( X a closed subvariety. Then there is a closed subvariety Z ⊂ Y ( X such that

H i(X,Y ) =
{
ZN i = dim(X)
0 else.

Example 11.1.2. Assume X = X̄ − H for a non-singular projective X̄ and a transversal
hyperplane section H. Choose a second hyperplane section H ′ transversal to X and H. Put
Y = X ∩H ′. We claim that it satisfies the property of the theorem. By Bertini’s theorem H, H ′
and Y are non-singular. As X and Y are both non-singular affine, our version of Artin vanishing
shows that their cohomology vanishes above dimX.

Proof. Hence H i(X,Y ) = 0 for i > dim(X).
We have Gysin sequences for (X̄,H) and (H ′, H ∩H ′):

. . . // H i−2(H) //

��

H i(X̄) //

��

H i(X) //

��

H i−1(H) //

��

. . .

. . . // H i−2(H ′ ∩H) // H i(H ′) // H i(Y ) // H i−1(H ′ ∩H) // . . .
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Let d = dim(X). By the Lefschetz hyperplane theorem, we have isomorphisms for i < d− 1 and
i− 1 < dim(H)− 1 = d− 2. Hence we also have isomorphisms H i(X) → H i(Y ) for i < d− 1.
Moreover, we have injections for i = d− 1. A diagram chase shows that we also have an injection
for Hd−1(X)→ Hd−1(H). Hence H i(X,Y ) = 0 for i < d− 1. That it is even free follows from
the universal coefficient theorem because the vanishing is true for any coefficients.

We deduce the “skeletal filtration”

Corollary 11.1.3. Let X be an affine algebraic variety of dimension d. Then there is an sequence

X0 ⊂ X1 ⊂ · · · ⊂ Xd = X

of closed subvarieties such that

H i(Xj , Xj−1) =
{
ZN i = j

0 else

Moreover, the Xj can be chosen of dimension j and such that Xj −Xj−1 is non-singular.

Proof. Let Z be a codimension 1 subvariety of X containing the singular locus of X. Let Yd−1
be the subvariety produced by the Basic Lemma. Proceed by induction.

Proof of the Basic Lemma. We follow [HMS17] p. 48. The argument is due to Nori. We first
work with coefficients in a field. Without loss of generality Z contains all singularities of X. By
Artin vanishing (in the general form) we have H i(X,Y ) = 0 for i > d and any subvariety of X
containing Z. It remains to choose Y such that we also have vanishing for i < d.

Let X̄ be projective closure of X. By resolution of singularities there is a blow-up π : X̃ → X̄
(proper surjective, isomorphism over X −Z) such that X̃ is non-singular and both the preimages
Z̃ of Z̄ and D∞ of X̄ −X and even Z̃ ∪D∞ are divisor with normal crossings (locally in the
analytic topology given by equations z1 . . . zm = 0). We choose a generic hyperplane section H̃
such that Z̃ ∪D∞ ∪ H̃ is still a divisor with normal crossings. (This is again a version of Bertini’s
theorem.) Put D0 = Z̃ ∪ H̃ and Y = π(D0 −D∞ ∩D0). This is a closed subvariety of X and
contains Z. By excision,

H i(X̃ −D∞, D0 ∩D∞) ∼→ H i(X,Y ),

hence it suffices to show vanishing on the level of X̃. By a version of Poincaré duality (see below),
we have

H i(X̃ −D∞, D0 −D0 ∩D∞) ∼→ H2d−i(X̃ −D0, D∞ −D0 ∩D∞)∗

As complement of a hyperplane, the variety X̃−D0 is affine. By Artin vanishing (the non-singular
version this time), the right hand side vanishes for 2d− i > d, hence for d > i. The only remaining
cohomology is in degree d.

Playing around with the universal coefficient theorem implies that even integral cohomology
is concentrated in degree d and even free.

Theorem 11.1.4 (Poincaré duality). Let X be a non-singular projective variety, D0 and D∞
divisors with normal crossings such that D0 ∪D∞ is again a divisor with normal crossings. Then
the duality map induces isomorphisms

H i(X −D0, D∞ −D∞ ∩D0) ∼→ H2d−i(X −D∞, D0 −D∞ ∩D0)∗

in singular cohomology with coefficients in a field.

Remark 11.1.5. The intersection condition on D0 and D∞ is necessary. There is a counterex-
ample in [HMS17, Remark 2.4.6].
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Proof. The complete argument is above our technical level. The result follows from patching
together local isomorphisms similar to our proof of Poincaré duality. Locally, we have coordinates
z1, . . . , zd and D0 is given by z1 . . . zn0 = 0 and D∞ by zn0+1 . . . zn∞ = 0. Let U0 be a polydisk
with coordinates z1, . . . , zn0 , U∞ a polydisk with coordinates zn0+1, . . . , zn∞ . Let Z0 and Z∞ be
the intersection with the divisors. Locally, we are in a product situation U0 × U∞ with divisors
Z0×U∞ and U0×Z∞. Roughly we get our isomorphism from local Poincaré duality isomorphisms

Hi(U0 − Z0) ∼= H i(U0, Z0) and Hj(U∞ − Z∞) ∼= Hj(U∞, Z∞).

11.2 The sheaf theoretic approach

One way to view homology is to see it as a means of keeping track of how local invariants induce
global ones. For example, a manifold is locally trivial (and locally its homology vanishes), but
globally non-trivial (its homology does not vanish). Sheaves are a systematic way of organising
the transition.

Definition 11.2.1. Let X be a topological space. A presheaf of abelian groups on X assigns to
every open subset U ⊂ X an abelian group F(U)

U 7→ F(U)

and to every inclusion V ⊂ U a group homomorphism ρUV : F(U) → F(V ) (the restriction
homomorphism) such that ρUU = id, ρV W ◦ ρUV = ρUW for all W ⊂ V ⊂ U . A morphism of
presheaves F → G consists of homomorphisms F(U) → G(U) compatible with the restriction
maps.

A presheaf is a sheaf if for every open cover U =
⋃

i∈I Ui the sequence

0→ F(U)→
∏
i∈I

F(Ui)→
∏

(i,j)∈I2

F(Ui ∩ Uj)

(where the map on the right is the difference of the restriction maps) is exact. A morphism of
sheaves is a morphism in the category of presheaves.

Example 11.2.2. (1) Let A be an abelian group. The assignment U 7→ A is a presheaf (the
constant presheaf ), but in general not a sheaf.

(2) Let X be a complex manifold, O(U) the ring of holomorphic functions. This is a presheaf
and even a sheaf.

Lemma 11.2.3. Let X be topological space, F a presheaf on X. There is a unique sheaf F+ (the
sheafification) together with a morphism θ : F → F+ such that every morphism F → G into a
sheaf factors uniquely via θ.

Proof. Omitted.

Example 11.2.4. The constant sheaf is the sheafification of the constant presheaf. If X is a
manifold, U =

⋃
i∈I UI a disjoint union of connected open subsets, then

U 7→ AI .

In particular, U 7→ A for connected open sets U .

Definition 11.2.5. Let f : X → Y be a continuous map of topological spaces, F a sheaf on X.
We define a sheaf f∗F on Y by

f∗F(U) = F(f−1(U)).

3



It is called push-forward of F.
Let G be a sheaf on Y . We define a sheaf f∗F on X as the sheafification of

f∗G(U) = lim
V⊃f(U)

G(V ).

If j : W → X is an open embedding, we also define j!F as the sheafification of

j!F(U) =
{
F(U) U ⊂W
0 else.

If Y ⊂ X is a subspace, we also write F|Y for the pull-back.

Remark 11.2.6. For good topological spaces like manifolds of the analytic spaces attached
to algebraic varieties, there is a way of extending the definition of singular cohomology to
cohomology with coefficients in sheaves H i(X,F). If j : U → X is an open embedding, then

H i(X, j!Z) ∼= H i(X,X − U ;Z).

Now we are ready to define our main player:

Definition 11.2.7. Let X be an algebraic variety over C. A sheaf on Xan is called weakly
constructible if there is a stratification of X into locally closed subvarieties (Si)i∈I such that the
F|San

i
are locally constant.

The strata Si can be chosen non-singular.

Theorem 11.2.8 (Basic Lemma II). Let X be an affine variety of dimension n and F a weakly
constructible sheaf on X. Then there exists a Zariski open subset j : U → X such that

(1) dim(X − U) < n,
(2) Hq(X,F′) = 0 for q 6= n where F ′ = j!j

∗F ⊂ F,

Lemma 11.2.9. Basic Lemma II implies the Basic Lemma.

Proof. Use F = jZ!Z for jZ : X − Z → X.
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