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10 Affine varieties

10.1 A Morse function

Our aim is to prove the following result:

Theorem 10.1.1. Let X non-singular, affine algebraic variety of dimension d, i.e., a non-
singular algebraic variety given by a Zariski-closed subset X ⊂ Cn for some n ∈ Z≥0. Then X is
deformation equivalent to a finite cell complex of dimension d.

Note that X has real dimension 2d.

Corollary 10.1.2 (Artin vanishing). The homology and cohomology of X are finitely generated
and concentrated in degree at most d.

Proof. This is true for all finite cell complexes of dimension at most d: use induction for the
skeletal filtration and the corresponding long exact sequences, see Remark VIII.2.8. In the
induction step, we consider

. . . Hi(Xn−1,Z)→ Hi(Xn,Z)→ Hi(Xn, Xn−1;Z)→ . . .

Hence Hi(Xn,Z) is an extension of a submodule Hi(Xn−1,Z) (hence finitely generated, 0 for
i > n− 1) and a submodule of

Hi(Xn, Xn−1;Z) =
{
Z#n-cells i = n

0 i 6= n
.

Remark 10.1.3. The Theorem was first proved by Andreotti and Frankel for Stein manifolds.
These are complex manifolds with many holomorphic sections, e.g., defined as the vanishing
locus of holomorphic functions on Cn. In this case, X is a deformation retract of a CW-complex
of dimension ≤ d.

The theorem also holds for singular Stein spaces, in particular also for singular affine varieties.
We follow the presentation of Voisin, see [Voi07, Chapter 1.2].
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The proof uses again Morse theory, but not for the real part of a holomorphic function.
Let h : Cn × Cn → C be the standard hermitian form. Note that s = <(h) is the standard

scalar product on R2n: For n = 1:

<(h(x, y)) = <(xȳ) = <(x)<(y)−=(x)(−=(y)).

Definition 10.1.4. Let X ⊂ RN be a smooth submanifold. For fixed P ∈ Rn we define

f = fP : X → R, f(x) = s((x− P ), (x− P )),

the square of the distance from x to P .

This function is obviously smooth on RN , hence on X.

Lemma 10.1.5. The function is exhaustive.

Proof. The function takes values in [0,∞). For every M ∈ [0,∞], the preimage f−1([0,M ]) is
bounded and closed, hence compact.

Is it a Morse function, i.e., does it have only non-degenerate critical points?

Example 10.1.6. Let S1 ⊂ R2 be the unit sphere and use P = (−1, 0). For Q = (x, y) ∈ S1,
we have

f(Q) = (x+ 1)2 + y2.

In order to determine the critical points, we have to use local coordinates on S1. We parametrize
(x,±

√
1− x2) for the upper or lower semi-circle. Hence

f(Q) = (x+ 1)2 + (1− x2) = 2x+ 2.

Its derivative does not vanish. Alternatively, we parametrize (±
√

1− y2, y) for the right or left
semi-circle. Hence

f(Q) = (±
√

1− y2 + 1)2 + y2 = 1− y2 ± 2
√

1− y2 + 1 + y2 = 2± 2
√

1− y2.

Its derivative is
± −2y√

1− y2 ,

hence we get critical points for y = 0. These are (−1, 0), (1, 0). They did not show up in the other
charts. Hence the critical points are isolated. We compute the Hessian, i.e., the second derivative:

±
−2
√

1− y2 + 2y(−2y)1
2
√

1− y2−1

1− y2

It takes values ±2, hence the critical point is non-degenerate. The function is a Morse function.

However, this is not always the case:

Example 10.1.7. Let X = S1 ⊂ R2, P = (0, 0). By definition

f(x, y) = x2 + y2 = 1,

hence all points are critical. They are not isolated.

Note that the level sets XM for our function are the intersections of X with a sphere of radius√
M around P . Hence the points are critical, if the level set touches this ball, i.e., if the tangent

space of XM is contained in the tangent space of the sphere. This is equivalent to the tangent
space being perpendicular to the vector −−→PQ.
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Lemma 10.1.8. Let X ⊂ RN be a smooth submanifold, fix P ∈ RN . Let Q ∈ X.Then

dfP,Q : TX,Q → R

is given by
dfP,Q(u) = 2s(−−→PQ, u).

In particular, Q ∈ X is a critical point of fP if and only if −−→PQ is orthogonal to TX,Q in RN .

Proof. We check the formula in local coordinates. Let x1, . . . , xN be the standard coordinates on
RN . Without loss of generality, x1, . . . , xd are are coordinates for X near Q = (q1, . . . , qN ). There
are smooth functions gd+1(x1, . . . , xd), . . . , gN (x1, . . . , xd) such that the points in this coordinate
chart are given as

(x1, . . . , xd, gd+1(x1, . . . , xd), . . . , gN (x1, . . . , xd))

The standard tangent vector of X in Q in direction x1 is identified with

u1 = (1, 0, . . . , 0, ∂gd+1
∂x1

(q1, . . . , qd), . . . )

We write P = (p1, . . . , pN ), Q = (q1, . . . , qN ). Hence

fP (x) =
d∑

i=1
(xi − pi)2 +

N∑
i=d+1

(gi(x1, . . . , xd)− pi)2.

Hence
∂fP

∂x1
= 2(x1 − p1) +

N∑
i=d+1

2(gi(x)− pi)
∂gi

∂x1

This evaluates to

∂fP

∂x1
(Q) = 2(q1 − p1) +

N∑
i=d+1

2(qi − pi)
∂gi

∂xi
(Q) = 2s(Q− P, u1).

The same computation works for the other basis vectors of TX,Q.

The idea is to vary P in order to find fP where the critical points are non-degenerate.

Definition 10.1.9. Let X ⊂ RN be a smooth submanifold. We put

Z = {(Q,P ) ∈ X × RN |
−−→
PQ ⊥ TX,Q}.

Lemma 10.1.10. Z is a smooth manifold of dimension N .

Proof. We use the same coordinates near a point Q as in the last proof. The vector fields
u1, . . . , ud are a basis of the tangent bundle of X near Q. Hence Z is cut out by the equations

s(−→Px, u1), . . . , s(−→Px, ud)

in Rd × RN . Explicitly, the system of equations is

(x1 − p1) +
N∑

i=d+1
(gi(x)− pi)

∂gi

∂x1
(x) = 0

(x2 − p2) +
N∑

i=d+1
(gi(x)− pi)

∂gi

∂x2
(x) = 0

. . .
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(xd − pd) +
N∑

i=d+1
(gi(x)− pi)

∂gi

∂xd
(x) = 0

The Jacobian of this system has rank d because the partial derivatives with respect to the
variables p1, . . . , pd are linearly independent. Hence they cut out a submanifold of dimension
N + d− d.

Lemma 10.1.11. Let (Q,P ) ∈ Z, u ∈ TX,Q. Then (u, 0) ∈ TX,Q × TRN ,P lies in TZ,(Q,P ) if and
only if u ∈ TX,Q is in the kernel of the quadratic form Hess(fP ).

Proof. We use an alternative description of Z. Consider the cotangent bundle T ∗X . Let

σ : X × RN → T ∗X × RN

be the section given by (Q,P ) 7→ ((dfP )Q, P ). Its zero locus is Z by the formula for dfP . In local
coordinates on X, the section σ can be written as

d∑
i=1

∂fP

∂xi
dxi.

The tangent space to Z at (Q,P ) is thus described as

TZ,(Q,P ) =
{

(u,w) ∈ TX,Q × TRN ,P |∂u
∂fP

∂xi
(Q,P ) + ∂w

∂fP

∂xi
(Q,P ) = 0, i = 1, . . . , d

}
.

We write u =
∑d

j=1 uj∂xj . Thus the vector (u, 0) is in TZ,(Q,P ) if and only if for i = 1, . . . , d

d∑
j=1

uj
∂

∂xj

∂fP

∂xi
(Q,P ) = 0.

By definition this means that u is in the kernel of HessfP .

Corollary 10.1.12. For fixed P , the point (Q,P ) ∈ Z is a degenerate critical point of fP if and
only if π : Z → RN is not an immersion.

Proof. The elements in the kernel of dπ : TZ → RN are the ones of the form (u, 0) ∈ TX×RN .

Proposition 10.1.13. For general P ∈ RN , the map fP is a Morse function.

Proof. Let Σ be the set of points of Z where π is not an immersion. Note that dimZ = dimRN ,
hence π is an immersion at (Q,P ) if and only it is a submersion. By Sard’s Theorem (see
Theorem 6.1.3 or Theorem 10.3.1), the image π(Σ) has Lebesgue measure 0. For every point
P /∈ π(Σ), the map fP is a Morse function.

10.2 The complex case

From now on we fix P such that fP is a Morse function. We now specialise to the case X ⊂ Cn.
We have

f(Q) = h(−−→PQ,−−→PQ)

for the standard hermitian form h on Cn.

Proposition 10.2.1. If X ⊂ Cn is algebraic, the fP has only finitely many critical points and
X has a deformation retract to a finite cell complex.
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Proof. With the notation used before, the critical points are the fibre of π : Z → RN in P . By
choice of P , the map π induces an isomorphism on tangent spaces in all points of π−1(P ). This
extends to a neighbourhood of f−1(P ), hence f−1(P ) is discrete. The set Z ⊂ R2n × R2n is
defined by polynomial equations because X ⊂ Cn is algebraic and s : R2n × R2n → R as well.
This makes f−1(P )→ P a discrete algebraic set, hence finite.

We now apply Morse theory, see Theorem VI.3.3. Hence every X≤M is a deformation retract
of a finite cell complex. As fP has only finitely many critical points, there is M such that
X≥M → [M,∞) does not have any critical points, making it a trivial fibration. Hence X≤M is a
deformation retract of X.

In order to prove the Theorem of Andreotti-Frankel 10.1.1, it remains to compute the Morse
index for our critical points. This is a local computation that needs some preparation.

Definition 10.2.2. Let X ⊂ RN be a smooth submanifold, Q ∈ X. We define the second
fundamental form

Φ : TX,Q × TX,x → RN/TX,Q

as follows: For v ∈ TX,Q choose a vector field V on a neighbourhood U of Q such that V (Q) = v.
Via TX,Q ⊂ RN , we can view V as a smooth map V : U → RN . For u ∈ TX,Q we put

Φ(u, v) = ∂uV modTX,Q.

Lemma 10.2.3. Φ is well-defined, symmetric and bilinear. If X ⊂ Cn is a complex submanifold,
then it is even C-bilinear.

Proof. We compute. Let x1, . . . , xN be the standard coordinates on RN . Without loss of generality
x1, . . . , xd are coordinates for X near Q. This means that there is an open neighbourhood U ⊂ X
of Q such that (x1, . . . , xd) : U → U ′ ⊂ Rd is a diffeomorphism. Then ∂i = ∂

∂xi
for i = 1, . . . , d

are a basis of TU . The map U ′ → RN has the shape

(x1, . . . , xd) 7→ (x1, . . . , xd, gd+1(x1, . . . , xd), . . . , gN (x1, . . . , xd))

hence the images of ∂i in TRN are the vector fields

V1 = (1, 0, . . . , 0, ∂gd

∂x1
, . . . ,

∂gN

∂x1
)

V2 = (0, 1, . . . , 0, ∂gd

∂x2
, . . . ,

∂gN

∂x2
)

. . .

Hence

V =
d∑

i=1
aiVi

for smooth functions ai : U ′ → R. Hence

Φ(∂j , V ) = ∂j

d∑
i=1

aiVi =
d∑

i=1

∂ai

∂xj
(Q)Vi(Q) +

d∑
i=1

ai(Q)∂Vi

∂xj
(Q) ≡

d∑
i=1

ai(Q)∂Vi

∂xj
(Q)

This shows well-definedness. Bilinearity is obvious. For symmetry, we specialise to V = Vi. Then
the above is equal to

∂Vi

∂xj
(Q) = (0, . . . , 0, ∂2gd

∂xj∂xi
(Q), . . . , ∂

2gN

∂xj∂xi
(Q)),

hence symmetric.
If X ⊂ Cn, then the same computation as above can be done with holomorphic coordinates

and a C-basis of the tangent space. We get same formula, which is still bilinear and symmetric.
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Remark 10.2.4. Φ has more canonical interpretation as the differential of the Gauß map
X → Grass(d,N). This does not seem to simplify the verification of the properties.

Proposition 10.2.5. Let X ⊂ RN be a smooth submanifold. Let P ∈ Cn such that fP is a
Morse function. Let Q ∈ X be a critical point. Then

Hess(fP )Q(u, v) = 2s(−−→PQ,Φ(u, v)) + 2s(u, v)

for all u, v ∈ TX,Q.

Note that s(−−→PQ,Φ(u, v)) is well-defined because −−→PQ is orthogonal to TX,Q in the critical
point Q.

Proof. We already know that
dfP (v) = 2s(−→Px, v)

for all v ∈ TX,x. We use local coordinates as in the last proof and consider u = ∂j , v = ∂i. We
have

s(−→Px, Vi) = (xi − pi) +
N∑

a=d+1
(ga(x1, . . . , xd)− pa)∂ga(x1, . . . , xd)

∂xi

and hence by applying ∂j we compute

∂js(
−→
Px, Vi) = δij +

N∑
a=d+1

∂ga

∂xj

∂ga

∂xi
+

N∑
a=d+1

(ga − pa) ∂ga

∂xj∂xi

The first two summands are s(u, v) the last sum (after specialising toQ) are equal to s(−−→PQ,Φ(u, v))
by the formula in the last proof.

Proposition 10.2.6. Let X ⊂ Cn be a smooth submanifold, P ∈ Cn such fP is a Morse function.
Assume that Q is a critical point. Then the Morse index is at most n.

Proof. By the last computation we are left with the following set-up: We have d-dimensional
C-sub vector space T ⊂ Cn, a C-bilinear symmetric map T × T → Cn/T . Fix Q ∈ T⊥. We
consider the R-bilinear map T × T → R

(u, v) 7→ s(x,Φ(u, v))) + s(u, v).

The form
H(u, v) = h(Φ(u, v), x)

is C-bilinear and symmetric, and

Q(u, v) = s(x,Φ(u, v)) = s(Φ(u, v), x) = <h(Φ(u, v), x) = <H(u, v)

is R-bilinear and symmetric. There is a decomposition T = T+ ⊕ T 0 ⊕ T− (into R-vector spaces)
such that Q is positive definite on T+, 0 on T 0, negative definite on T−. These spaces are not
unique, but their dimensions are. Let t ∈ T+. Then it satisfies

Q(it, it) = H(it, it) = i2H(t, t) = −Q(t, t) < 0.

Hence Q is negative definite on iT+, hence dimT+ ≤ dimT−. By symmetry, we have dimT+ =
dimT−. This implies dimT− ≤ d. As s is positive definite on all of T , the sum Q+ s is positive
definite on T+ ⊕ T 0. Hence the index of Q+ s is at most dimT− ≤ d.

This finishes the proof of Andreotti-Frankel.

6



10.3 Sard’s theorem

We now prove Sard’s Thereom (Theorem 6.1.3). For ease of reference, we recall the statement
here.

Theorem 10.3.1 (Sard). Let f : X → Rp be a smooth map of smooth manifolds. Let Σ ⊂ X
be the set of points where dfx is not surjective. Then f(Σ) has measure 0 with respect to the
Lebesgue measure.

Proof. We follow [Mil97, pp. 16-19].
Let n = dimX. As X is covered by countably many coordinate charts, it suffices to prove

the theorem for X ⊂ Rn open. The argument is by induction on n. It is trivial for n = 0.
We consider the filtration

Σ ⊃ Σ1 ⊃ Σ2 ⊃ . . .

where Σi is the set of critical points where all partial derivatives of order ≤ i vanish. The proof
has three steps:

Step 1 The image f(Σ− Σ1) has measure 0.
Step 2 The image f(Σi − Σi+1) has measure 0 for i ≥ 1.
Step 3 The image f(Σk) has measure 0 for k sufficiently large.

Step 1:We may assume p ≥ 2 because Σ = Σ1 for p = 1. We use Fubini: if A ⊂ Rp = R×Rp−1

is measurable and intersects all hyperplanes {c}×Rp−1 in a set of measure 0, then A has measure
0. For each P ∈ Σ− Σ1, we will find an open neighbourhood V ⊂ Rn such that f(V ∩ Σ) has
measure 0. Since Σ1 − Σ1 is covered by countably many of these, this is enough. Since P /∈ Σ1,
there is a partial derivative, say ∂f1/∂x1, that does not vanish in P . We consider

h : X → Rn, x 7→ (f1(x), x2, . . . , xn).

Its Jacobian has full rank at P , hence there is a neighbourhood V of P mapped diffeomorphically
to a neighbourhood V ′. Consider the composition g = f ◦ h−1 : V ′ → Rp. Its critical points are
Σ′ = h(V ∩ Σ), hence g(Σ′) = f(V ∩ Σ). For each (t, y2, . . . , yn) ∈ V ′ note that g(t, y2, . . . , yn) ∈
{t} × Rp−1 ⊂ Rp. Let

gt : {t} × Rn−1 ∩ V ′ → {t} × Rp−1

be the restriction of g. A point in the domain of gt is critical for gt if and only if it is critical for
g. By the induction hypothesis its image has measure 0 in {t} × Rn−1. By the Fubini criterion
this implies that g(Σ′) = f(Σ) has measure 0.

Step 2: Let P ∈ Σk−Σk+1. Hence there is some (k+1)st partial derivative ∂k+1fr/∂xs1 . . . ∂xsk+1

non-zero at P . Thus the function

ω(x) = ∂kfr

∂xs2 . . . ∂xsk+1

vanishes at P , but ∂ω/∂xs1 does not. Without loss of generality, s1 = 1. Consider h : X → Rn

given by
h(x) = (ω(x), x2, . . . , xn)

carries some neighbourhood V of P diffeomorphically onto V ′ ⊂ Rn. It maps Σk∩V to {0}×Rn−1.
Again consider

g = f ◦ h−1 : V ′ → Rp.

Let ḡ be the restriction of g to {0} × Rn−1. By induction, the set of critical values of ḡ has
measure zero in Rn. All point in h(Σk ∩ V ) are critical points of ḡ (since all partial derivatives to
order ≤ k vanish), therefore

ḡh(Σk ∩ V ) = f(Σk ∩ V )
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has measure 0. As in the first step this suffices to show that f(Σk − Σk+1) has measure 0.
Step 3: Let In ⊂ X be a cube with edge δ, k + 1 > n/p. We will prove that f(Σk ∩ In) has

measure 0. We use the Taylor expansion and the definition of Σk. For P ∈ Σk ∩ In

f(P + h) = f(P ) +R(P, h)

where
‖R(P, h)‖ ≤ c‖h‖k+1

for P + h ∈ In. Here c is a constant that depends only on f and In. We subdivide In into rn

cubes of edge δ/r. Let I be a cube in the subdivision containing a point P ∈ Σk. Any point in I
can be written as P + h with

‖h‖ ≤
√
n(δ/r)

Hence f(I) lies in a cube of edge a/rk+1 centered at f(P ) where a = 2c(
√
nδ)k+1 is constant.

Hence f(Σk ∩ In) is contained in a union of at most rn cubes having total volume

V ≤ rn(1/rk+1)p = aprn−(k+1)p.

By our assumption on k, the exponent r − (k + 1)p is negative, hence the right hand side tends
to 0 for r →∞. This means that f(Σk ∩ In) has measure 0.

This completes the proof.
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