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1 Topological spaces
Motivation. Our primary objects of interest will be “spaces” contained in Euclidean spaces Cn,
e.g., the subset

{(x, y) ∈ Cn | y2 = x3 + x+ 1} ⊆ C2.

Each such space inherits a notion of distance from Cn = R2n. In studying these spaces, however,
we will be led to consider spaces that are not contained in a Euclidean space in an obvious way,
such as the tangent space TX of a manifold X. We therefore begin by introducing a notion
of space that is sufficiently intrinsic and robust that we need not worry about constructing
embeddings into Euclidean spaces.

1.1 Topological spaces and continuous maps

Open and closed subsets of Euclidean spaces

Definition 1.1.1. Let E = Rn or E = Cn, let z = (z1, . . . , zn) ∈ E, and let r ∈ R≥0.
(1) We let |·| : E→ R denote the Euclidean norm, given by

|z| :=
√
z1z̄1 + · · ·+ znz̄n =

√
|z1|2 + · · ·+ |zn|2.

(2) The open disk D(z, r) of radius r centered at z is the subset

D(z, r) := {w ∈ E | |w − z| < r} ⊆ E.

(3) The closed disk D̄(z, r) of radius r centered at z is the subset

D̄(z, r) := {w ∈ E | |w − z| ≤ r} ⊆ E.

(4) The boundary ∂D(z, r) of the disk of radius r centered at z is the subset

∂D(z, r) := {w ∈ E | |w − z| = r} = D̄(z, r)−D(z, r) ⊆ E.
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(5) The punctured open disk of radius r centered at z is the subset

D∗(z, r) := {w ∈ E | 0 < |w − z| < r} = D(z, r)− {z} ⊆ E.

(6) The punctured closed disk of radius r centered at z is the subset

D̄∗(z, r) := {w ∈ E | 0 < |w − z| ≤ r} = D̄(z, r)− {z} ⊆ E.

(7) A subset ⊆ E is an open polydisk if it is of the form

D(z1, r1)× · · · ×D(zn, rn)

for some r1, . . . , rn ∈ R≥0. We define closed polydisks similarly.

Definition 1.1.2. Let E = Rn or E = Cn and let X ⊆ E.
(1) We say that X is open in E if, for each z ∈ X, there exists ε ∈ R>0 such that D(z, r) ⊆ X.
(2) We say that X is closed in E if the complementary subset E−X is open.
(3) More generally, ifX ⊆ Y ⊆ E, then we say thatX is open in Y or closed in Y , respectively,

if there exists an open or closed subset X ′ ⊆ E such that X = X ′ ∩ Y .

Exercise 1.1.3. Subsets are not doors. Given examples of subsets X ⊆ Rn with the following
properties:

(1) X is neither open nor closed;
(2) X is open but not closed;
(3) X is closed but not open;
(4) X is both open and closed.

Exercise 1.1.4. Let E = Rn or Cn, let U ⊆ E be an open subset, and let x = (x1, . . . , xn) ∈ U .
There exists (r1, . . . , rn) ∈ Rn

≥0 such that the open polydisk

(1.1.4.a) D(x1, r1)× · · · ×D(xn, rn)

is contained in U .

Definition 1.1.5. Let E = Rn or Cn. A subset X ⊆ E is convex if, for each pair of points
x, y ∈ E, the line segment L joining them in E is contained in X.

Exercise 1.1.6. Let E = Rn or Cn, let (x1, . . . , xn) ∈ E, and let (r1, . . . , rn) ∈ Rn
≥0. The

polydisk (1.1.4.a) is convex.

Topological spaces

Motivation. By virtue of this definition of open subsets of Rn, two points x, y ∈ Rn are “close”
to one another, i.e., the distance |x− y| between them is “small”, precisely when x and y belong
to “many” of the same open subsets. It turns out that using the notion of open subsets to
characterize proximity has certain advantages over that of a distance function. We will therefore
use an axiomatization of the properties of open subsets as the basis for our most basic notion of
“space”, i.e., that of a “topological space”. We will later need to consider a more refined notion of
space—that of a “smooth manifold”—in order to gain access to the formalism of differential and
integral calculus.

Topological spaces and subspaces

Definition 1.1.7. Let X be a set. A topology τ on X is a set of subsets of X satisfying the
following conditions:
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(1) ∅ ∈ τ and X ∈ τ ;
(2) if I is a set and Ui ∈ τ for each i ∈ I, then

⋃
i∈I Ui ∈ τ ; and

(3) if J is a finite set and Uj ∈ τ for each j ∈ J , then
⋂
j∈J Uj ∈ τ .

Definition 1.1.8. A topological space is a pair (X, τ) consisting of a set X and a topology τ on
X.

Definition 1.1.9. Let (X, τ) be a topological space.
(1) A subset U ⊆ X is open with respect to τ if U ∈ τ .
(2) A subset Z ⊆ X is a closed with respect to τ if the complement X − Z is open.

Exercise 1.1.10. Let X be a set. Show that the datum of a family of open sets for a topology
τ on X is equivalent to that of a family σ satisfying the following conditions:

(1) ∅ ∈ σ and X ∈ τ ;
(2) if I is a set and Zi ∈ σ for each i ∈ I, then

⋂
i∈I Zi ∈ σ; and

(3) if J is a finite set and Zj ∈ σ for each j ∈ J , then
⋃
j∈J Zj ∈ σ.

Here, σ corresponds to the set of closed subsets of the topology τ .

Neighborhoods, closures, interiors, and boundaries

Definition 1.1.11. Let X be a topological space and let V ⊆ W ⊆ X. We say that W is a
neighborhood of V in X if there exists an open subset U of X such that Y ⊆ U ⊆W . If x ∈ X
and V = {x}, then we say that W is a neighborhood of x in X.

Definition 1.1.12. Let X be a toplogical space and let A ⊆ X be a subset.
(1) The closure Ā of A in X is the smallest closed subset of X containing A, i.e., the

intersection of all closed subsets Z ⊆ X such that A ⊆ Z.
(2) The interior A◦ of A in X is the largest open subset of X contained in A, i.e., the union

of all open subsets U ⊆ X such that U ⊆ A.
(3) The boundary ∂A of A in X is the relative complement Ā−A◦. Note that ∂A is closed

in X.

Exercise 1.1.13. Let X be a topological space. A subset A ⊆ X is open (resp. closed) if and
only if A = A◦ (resp. A = Ā).

Proposition 1.1.14. Let X be a toplogical space, let A ⊆ X be a subset, and let x ∈ X.
(1) The point x belongs to X − Ā if and only if there exists an open neighborhood x ∈ U ⊆ X

such that U ∩A = ∅.
(2) The point x belongs to A◦ if and only if there exists an open neighborhood x ∈ U ⊆ X

such that U ∩ (X −A) 6= ∅.
(3) The point x belongs to ∂A if and only if, for each open neighborhood x ∈ U ⊆ X, neither

of the intersections U ∩A nor U ∩ (X −A) is empty.

Proof. Consider Claim (1). Suppose that U ∩ A = ∅ for some open neighborhood U of x. We
then have A ⊆ X − U . As X − U is closed, and Ā is the smallest closed subset of X containing
A, we have Ā ⊆ X − U , or, equivalently, x ∈ U ⊆ X − Ā. For the converse, consider the open
neighborhood U := X − Ā.

Consider Claim (2). Suppose that U ∩ (X −A) = ∅ for some open neighborhood U of x. We
then have U ⊆ A. As A◦ is the largest open subset of X contained in A, we have x ∈ U ⊆ A◦.
For the converse, consider the open neighborhood U := A◦.

Consider Claim (3). Combine (1) and (2), recalling that ∂A = Ā−A◦ = (X −A◦) ∩ (X −
(X − Ā)).
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Examples of topological spaces

Example 1.1.15. Let n ∈ Z≥0. The open subsets of Rn as defined in Definition 1.1.2 form a
topology on Rn, which we refer to as the standard or Euclidean topology.

Example 1.1.16. Let n ∈ Z≥0. The unit n-sphere Sn is the subspace

Sn := {x ∈ Rn+1 | |x| = 1} ⊆ Rn+1.

Example 1.1.17. Let X be a set.
(1) The discrete topology on X is the topology in which each subset of X is declared to be

open.
(2) The indiscrete topology on X is the topology in which ∅ and X are both open, and no

other subsets are open.

Example 1.1.18. The cofinite topology on R is the topology in which a subset U ⊆ R is
declared to be open if its complement R − U is a finite set.

Remark 1.1.19. If U ⊆ R is open in the cofinite topology, then it is open in the standard
topology. The converse is not true. We say that the standard topology is finer than the cofinite
topology. The indiscrete topology is the coarsest topology, and the discrete topology is the finest.
In general, given two topologies τ and τ ′ on a set X, one is not necessarily finer than the other:
refinement is only a partial ordering on the set of topologies.

Example 1.1.20. Let n ∈ Z≥0.
(1) Let S be a set of polynomials with complex coefficients in n variables. Their vanishing

locus V(S) ⊆ Cn is the set

V(S) := {z ∈ Cn | ∀f ∈ S [f(z) = 0]},

of their common zeros.
(2) A subset X ⊆ Cn is algebraic if it is of the form X = V(S) for some family of polynomials

S.
(3) If (Si)i∈I is a set of families of polynomials, then the vanishing locus of the union is the

intersection of the sets V(Si) with i ∈ I:

V
(⋃
i∈I

Si

)
=
⋂
i∈I

V(Si).

In other words, arbitrary intersections of algebraic sets are algebraic. If S and T are two families
of polynomials in n variables, let S · T denote the set of polynomials given by

S · T := {f · g | f ∈ S, g ∈ T}.

With this notation, we have
V(S) ∪V(T ) = V(S · T ),

i.e., finite unions of algebraic sets are algebraic. As ∅ = V({1}) and Cn = V({0}), it follows
from Exercise 1.1.10 that the algebraic subsets are the closed subsets for a unique topology on
Cn, which we refer to as the Zariski topology.

(4) More generally, if X ⊆ Cn is any subset, the Zariski topology on X is the subspace
topology on X associated with the Zariski topology on Cn.

Exercise 1.1.21. Identify all possible topologies on the following sets:
(1) {0}
(2) {0, 1}
(3) {0, 1, 2}
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Subspaces

Definition 1.1.22. Let (X, τ) be a topological space and let Y ⊆ X be a subset. The subspace
topology on Y is the topology on Y whose open sets are of the form U ∩ Y with U ∈ τ .

Exercise 1.1.23. Let (X, τ) be a topological space and let Y be a subset. Prove the following
assertions.

(1) If Y ⊆ X is open, then U ⊆ Y is open in the subspace topology if and only if U is an
open subset of X.

(2) A subset Z ⊆ Y is closed in the subspace topology if and only if there exists a closed
subset Z ′ ⊆ X such that Z = Z ′ ∩ Y .

Limit points

Definition 1.1.24. Let X be a topological space, let A ⊆ X be a subset, and let x ∈ X. We
say that x is a limit point of A if, for each neighborhood x ∈ N ⊆ X, N ∩A 6= ∅.

Proposition 1.1.25. Let X be a topological space. The subset A ⊆ X is closed if and only if A
contains each of its limit points.

Proof. Suppose that A is closed. If x ∈ X − A, then X − A is an open neighborhood of x not
meeting A, so x is not a limit point of A. Conversely, suppose that A contains each of its limit
points. If x ∈ X − A, then x is not a limit point of A, so there exists a neighborhood of x
contained in X −A. This neighborhood contains an open neighborhood by definition, so X −A
is open.

Continuous maps

Definition 1.1.26. Let X and Y be topological spaces and f : X → Y a function. We say that
f is:

(1) continuous if f−1(V ) ⊆ X is open for each open set V ⊆ Y ;
(2) open if f(U) ⊆ Y is open for each open V ⊆ X;
(3) closed if f(Z) ⊆ Y is closed for each closed Z ⊆ X; and
(4) a homeomorphism if it is continuous and it admits a continuous inverse, i.e., a continuous

function g : Y → X such that g ◦ f = idX and f ◦ g = idY .

Remark 1.1.27. If there exists a homeomorphism f : X → Y , then X and Y are indistinguish-
able in terms of the topological properties that they satisfy. For the reader familiar with the
categorical notion of an isomorphism, homeomorphisms are precisely the isomorphisms in the
category of topological spaces and continuous maps.

Proposition 1.1.28. Let X, Y and Z be topological spaces.
(1) The identity map idX : X → X is a homeomorphism and, in particular, it is continuous.
(2) If f : X → Y and g : Y → Z are continuous maps, then the composite g ◦ f : X → Z is

continuous.
(3) If X is a subspace of Y and i : X ↪→ Y is the inclusion map, then i is continuous.
(4) If X is an open (resp. closed) subspace of Y and i : X ↪→ Y is the inclusion map, then i

is open (resp. closed).

Proof. By definition, idX(x) = x for each x ∈ X, so idX = id−1
X . Thus, Claim (1) is the vacuous

assertion that U ⊆ X is open if and only if U ⊆ X is open.
Consider Claim (2). Let U ⊆ Z be open. We have (g ◦ f)−1(U) = f−1(g−1(U)). Continuity

of f implies that f−1(U) is open, and the claim now follows from continuity of g.
Claim (3) is essentially the definition of the subspace topology (Definition 1.1.22).
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Consider Claim (4). Suppose that X is an open (resp. closed) subspace of Y andW is an open
(resp. closed) subspace of X. By definition of the subspace topology, i(W ) = W = W ′ ∩X for
some open (resp. closed) subset W ′ ⊆ Y . As the intersection of two open (resp. closed) subsets is
another such, the claim follows.

Example 1.1.29. Let n ∈ Z>0, let U ⊆ Rn be an open subset, and let f : U → R be a function.
The following conditions are equivalent:

(1) f is continuous;
(2) for each ε ∈ R>0 and each x ∈ U , there exists δ ∈ R>0 such that, for each y ∈ U , if

|x− y| < δ, then |f(x)− f(y)| < ε.

Example 1.1.30. Let X ⊆ R2 be the subset consisting of the points (x, y) such that y = x2.
The projection π : (x, y) 7→ x : X → R is a homeomorphism with inverse ι : x 7→ (x, x2) : R → X.

Exercise 1.1.31. Let f : X → Y be a continuous map of topological spaces that is bijective on
underlying sets. Show that the following conditions are equivalent:

(1) f is a homeomorphism;
(2) f is open; and
(3) f is closed.

Exercise 1.1.32. Provide an example of a continuous bijection that is not a homeomorphism.

Exercise 1.1.33. Construct a homeomorphism f : D(x, r) → R for n ∈ Z>0, x ∈ Rn, and
r ∈ R>0.

1.2 Product spaces, gluing, and quotient spaces

Product topology

Proposition 1.2.1. Let X and Y be topological spaces. There is a topological space X × Y
equipped with continuous maps p : X ×Y → X and q : X ×Y → Y such that, for each topological
space W equipped with continuous maps f : W → X and g : W → Y , there exists a unique
continuous map h : W → X×Y such that f = p◦h and g = q◦h. Moreover, the data (X×Y, p, q)
is unique up to unique homeomorphism.

Proof. The set underlying X × Y is the Cartesian product of the sets underlying X and Y , i.e.,
it is the set of ordered pairs (x, y) such that x ∈ X and y ∈ Y . We define a topology on this set
by declaring that a subset W ⊆ X × Y is open if it is a union of subsets of the form U × V with
U ⊆ X and V ⊆ Y open subsets. This is indeed a topology: ∅ = ∅ × ∅ and X × Y are both
open in this sense, open subsets are stable under arbitrary unions by fiat, and the equalities( ⋃

α∈A
(Uα × Vα)

)
∩
( ⋃
α∈A

(U ′β × V ′β)
)

=
⋃
α∈A

⋃
β∈B

((Uα × Vα) ∩ (U ′β × V ′β))

=
⋃
α∈A

⋃
β∈B

((Uα ∩ U ′β)× (Vα ∩ V ′β))

show that they are also stable under finite intersections.
Let W be a topological space and let f : W → X and g : W → Y be continuous maps. The

function (f, g) : W → X × Y given by (f, g)(w) = (f(w), g(w)) is the unique map of sets h such
that f = p ◦ h and g = q ◦ h. It remains to show that (f, g) is continuous. We may write each
open subset of X × Y in the form

⋃
α∈A(Uα × Vα) with Uα and Vα open subsets of X and Y ,

respectively, for each α ∈ A, and we have

(f, g)−1
( ⋃
α∈A

(Uα × Vα)
)

=
⋃
α∈A

(f, g)−1(Uα × Vα) =
⋃
α∈A

(f−1(Uα) ∩ g−1(Vα)),
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which is open in W by continuity of f and g.
The last assertion follows from the uniqueness of the map (f, g) we have just constructed.

Indeed, if (P, p′ : P → X, q′ : P → Y ) is another triple satisfying the same conditions as (X ×
Y, p, q), then there exist unique continuous maps h : X × Y → P and k : P → X × Y compatible
with p′, q′, p, and q. Applying the same uniqueness condition to the composites h ◦ k and
k ◦ h, we find that h ◦ k and k ◦ h are identity morphisms, so h and k are mutually inverse
homeomorphisms.

Definition 1.2.2. We refer to the topological space W of Proposition 1.2.1 as the product of X
and Y , and we refer to the maps p and q as the projections.

Example 1.2.3. For each m,n ∈ Z≥0, the projections Rm+n → Rm and Rm+n → Rn induce
a unique continuous map Rm+n → Rm ×Rn. This map is a homeomorphism.

Definition 1.2.4. Let f : X → S and g : Y → S be continuous maps of topological spaces. The
fiber product X ×S Y of X and Y over S is the subspace

X ×S Y := {(x, t) ∈ X × Y | f(x) = g(t)} ⊆ X × Y.

We refer to the composites p : X ×S Y ↪→ X × Y → X and q : X ×S Y ↪→ X × Y → Y of the
inclusion with the projection maps on X × Y as the projection maps.

Exercise 1.2.5. With the notation and hypotheses of Definition 1.2.4, show that, for each
commutative square of solid arrows

W

X ×S Y X

Y S

ϕ
(ϕ,ψ)

ψ p

q f

g

consisting of continuous maps of topological spaces, there exists a unique continuous map
(ϕ,ψ) : W → X ×S Y such that ϕ = p ◦ (ϕ,ψ) and ψ = q ◦ (ϕ,ψ). This is the universal property
of the fiber product.

Quotient topology

Proposition 1.2.6. Let X be a topological space, and let R be an equivalence relation on the
set underlying X. There is a topological space X/R equipped with a surjective continuous map
p : X → X/R such that, for each continuous map of topological spaces f : X → Y such that
f(x) = f(x′) for each (x, x′) ∈ R, there exists a unique continuous map f̄ : X/R→ Y such that
f = f̄ ◦ p. Moreover, the data (X/R, p) is unique up to unique homeomorphism.

Proof. The set underlying X/R is the set of equivalence classes

[x] := {y ∈ X | (x, y) ∈ R}

for the relation R. There is a natural surjection πx 7→ [x] : : X → X/R. We declare a subset
U ⊆ X/R to be open if its preimage π−1(U) is open in X. These are the open subsets for a
topology onX/R: ∅ andX are open in this sense, and preimages preserve unions and intersections,
so open subsets in this sense are stable under arbitrary unions and finite intersections by virtue
of the analogous properties for the given topology on X. By construction, π is continuous with
respect to this topology.

Let f : X → Y be a continuous map that is constant on the equivalence classes of the relation
R. As maps of sets, f factors uniquely in the form f̄ ◦ π: f̄([x]) = f(x) for each x ∈ X. If U ⊆ Y
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is open, then f−1(U) = π−1(f̄−1(U)) ⊆ X is open by continuity of f and, by definition of the
topology on X/R, this means that f̄−1(U) is open in X/R, so f̄ is continuous.

Suppose that (Q,ϕ : X → Q) is another pair satisfying the same conditions as (X/R, π).
These conditions provide us with unique continuous maps π̄ : Q→ X/R and ϕ̄ : X/R→ Q. By
uniqueness, the composites π̄ ◦ ϕ̄ and ϕ̄ ◦ π̄ must be the identity maps, so π̄ and ϕ̄ are mutually
inverse homeomorphisms.

Definition 1.2.7. We refer to the space X/R of Proposition 1.2.6 as the quotient space of X by
R and we refer to p as the quotient map.

Example 1.2.8. S2, T2, Möbius strip, Klein bottle, RP2

Example 1.2.9 (Complex projective space). Let n ∈ Z≥0 and consider the subspace Cn+1 −
{0} ⊆ Cn+1. We define an equivalence relation on Cn+1−{0} by declaring that x ' y if and only
if there exists λ ∈ C such that x = λy, i.e., if and only if x and y span the same 1-dimensional
subspace. The quotient space of Cn+1 − {0} by this equivalence relation is the n-dimensional
complex projective space CPn. It will be a fundamental example in the sequel.

Gluing construction

Proposition 1.2.10. Consider the following data and hypotheses:
• S, X and Y are topological spaces; and
• ϕ : S → X and ψ : S → Y are continuous maps.

There exists a topological space X qS Y equipped with continuous maps p : X → X qS Y and
q : Y → X qS Y , such that for each commutative diagram of solid arrows

S X

Y X qS Y

Z

ϕ
ψ p

fq

g

h

there exists a unique continuous map h rendering the diagram commutative. Moreover, the triple
(X qS Y, p, q) is unique up to unique homeomorphism.

Proof. Consider the disjoint unions X q Y and X q S q Y . The morphisms idX , ϕ, ψ, and idY
induce a unique continuous map σ : X q S q Y → X q Y . Define an equivalence relation R on
X q Y by declaring that (x, y) ∈ R if and only if σ(x) = σ(y). Equip X qS Y := (X q Y )/R
with the quotient topology of Proposition 1.2.6, and let p and q denote the composites

X ↪→ X q Y � X qS Y and Y ↪→ X q Y � X qS Y,

which are continuous as composites of continuous maps are continuous.
Consider continuous maps f : X → Z and g : Y → Z such that f ◦ϕ = g ◦ψ. The maps ϕ and

ψ induce a unique continuous map h̃ : X q Y → Z. By construction, h̃ is constant on equivalence
classes for R, so it factors uniquely through a continuous map X qS Y → Z by Proposition 1.2.6.

The proof of last assertion is the same as in Proposition 1.2.1 and Proposition 1.2.6.

Definition 1.2.11. We refer to the topological space X qS Y of Proposition 1.2.10 as the space
obtained by gluing X and Y along S.

Example 1.2.12. RPn, CPn
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1.3 Connected, Hausdorff, and quasi-compact spaces

Connected spaces

Definition 1.3.1. The topological space X is connected if it is not the disjoint union of two
nonempty open subsets: for each pair of open subsets U, V ⊆ X, if U ∩ V = ∅ and U ∪ V = X,
then U = ∅ or V = ∅.

Proposition 1.3.2. With respect to the Euclidean topology, R is connected, as is the subspace
[a, b] for each a, b ∈ R.

Proof. The empty set and the singleton are both connected, so we may assume without loss of
generality that a < b. Let X denote either R or [a, b]. Let U, V ⊆ X be disjoint open subsets
such that U ∪ V = X. Let x ∈ U and y ∈ V . Without loss of generality, we may assume that
x < y. Let z denote the infimum of V ∩ [x, y]. In particular, [x, z) ∩ V = ∅. As U = −V is open,
V is closed in X, so it must contain its limit point z. As U is also closed, by openness of V ,
and z is a limit point of [x, z) ⊆ U , we must also have z ∈ U , contradicting the hypothesis that
U ∩ V = ∅.

Example 1.3.3. D(x, ε), {x = 0} ∪ {y = 0}, {x = 0} ∪ {x = 1}

Proposition 1.3.4. A topological space X is connected if and only if ∅ and X are the only
subsets of X that are simultaneously open and closed.

Proof. Given a pair of nonempty, disjoint open subsets U, V ⊆ X witnessing the nonconnectedness
ofX, U and V are both closed, as their respective complements V and U are both open. Conversely,
if ∅ 6= U ( X is open and closed, then ∅ 6= V := X − U ( X is also open, disjoint from U , and
complementary to U .

Proposition 1.3.5. If f : X → Y is a continuous map and X is connected, then the subspace
f(X) ⊆ Y is connected.

Proof. Factoring f as the composite X → f(X) ↪→ Y , we may assume without loss of generality
that f(X) = Y . Let U and V be disjoint open subsets of Y such that U ∪ V = Y . In particular,
U and V are also closed. The preimages f−1(U) and f−1(V ) are open and closed, and their
union is X. Their intersection must also be empty, as it is the preimage of U ∩ V = ∅.

Example 1.3.6. S1 is connected as the continuous image of f : θ 7→ exp(iθ) : R → C

Example 1.3.7. Let x ∈ R2, let r ∈ R>0, and let D := D(0, r). We claim that the subspace
X = R2 −D ⊆ R2 is connected.

Suppose for contradiction that X = U ∪ V with U, V ⊆ X open, and that U ∩ V = ∅. First,
note that U and V are closed in R2: they are closed in R2 −D, and R2 −D is closed in R2.

We now observe that U ∩ ∂D 6= ∅. Suppose for contradiction that ∂D ∩ U = ∅. In this
case, we have ∂D ⊆ V and, hence, U and V ∪D = V ∪ D̄ are disjoint closed subsets of R2 and
U ∪ (V ∪ ∂D) = R2, which contradicts the fact that R2 is connected. The same argument shows
that V ∩ ∂D 6= ∅.

It follows that (U ∩ ∂D) and (V ∩ ∂D) are disjoint closed subsets whose union is ∂D. As ∂D
is homeomorphic to S1, it is connected, and we have the required contradiction.

Lemma 1.3.8. Let X be a topological space and let {Yα}α∈A be a family of connected subspaces
of X. If there exists α0 ∈ A such that Yα0 ∩ Yα 6= ∅ for each α ∈ A, then Y :=

⋃
α∈A Yα is

connected.

Proof. Let U and V be disjoint, open subsets of Y such that Y = U ∪ V . For each α ∈ A, the
hypothesis that Yα is connected implies that Yα ⊆ U or Yα ⊆ V . Indeed, U ∩ Yα and V ∩ Yα are
disjoint open subsets of Yα whose union in Yα, so one of them must be empty. Without loss of
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generality, we may assume that Yα0 ⊆ U . If Yα ⊆ U for each α ∈ A, then Y ⊆ U . If not, there
exists α ∈ A such that Yα ⊆ V . In that case, Yα0 ∩ Yα ⊆ U ∩ V = ∅.

Example 1.3.9. For each n ∈ Z>1, the subspace Rn−{0} ⊆ Rn is connected. Let L be a line in
Rn not passing through the origin and let {Lα}α∈A denote the set of all lines in Rn not passing
through the origin and intersecting L. In particular, there exists α0 ∈ A such that L = Lα0 . By
Proposition 1.3.2, Lα is connected for each α. By Lemma 1.3.8, it suffices to show that the union⋃
α∈a Lα is Rn − {0}. Let x ∈ Rn − {0}. If x ∈ L, then there is nothing to show. If x 6∈ L, then

x and L determine a plane in Rn. As 0 lies on at most one line in this plane, we may choose a
line meeting x and L not containing 0. This line is Lα for some α, so x ∈ Lα.

Example 1.3.10. The space CPn is connected for each n ∈ Z≥0.

Proof. If n = 0, then CP0 is a singleton, hence connected. Suppose that n > 0. The space
Cn+1−{0} is connected by Example 1.3.9, and the quotient map Cn+1−{0} → CPn is surjective
and continuous by definition, so CPn is connected by Proposition 1.3.5.

Connected components

Definition 1.3.11. Let X be a topological space. A connected component of X is a maximal
connected subspace, that is, a connected subspace Y ⊆ X such that, for each connected subspace
Y ′ ⊆ X, if Y ⊆ Y ′, then Y = Y ′.

Proposition 1.3.12. Let X be a topological space and let {Yα}α∈A be a family of connected
subspaces of X. If the intersection

⋂
α∈A Yα is nonempty, then the union Y =

⋃
α∈A Yα is

connected.

Proof. Let x belong to the intersection and let U and V be disjoint open subsets of Y whose
union is Y . Without loss of generality, suppose that x ∈ U . For each α ∈ A, the connected
subspace Yα must be contained in U or in V . For each α ∈ A, x ∈ Yα ∩ U implies that Yα 6⊆ V ,
so we must have Y ⊆ U .

Proposition 1.3.13. Let X be a topological space.
(1) The connected components of X are disjoint.
(2) Each nonempty connected subspace Y ⊆ X is contained in a unique connected component.

In particular, X is the union of its connected components.

Proof. Consider Claim (1). Suppose that two connected components X0 and X1 of X intersect
in a point x. By Proposition 1.3.12, the union X0 ∪X1 is connected. By maximality of connected
components, we must have X0 = X0 ∪X1 = X1.

Consider Claim (2). Let Z ⊆ X be a nonempty connected subspace. Let A be a totally
ordered set, let Yα be a connected subspace of X containing Z for each α ∈ A, and suppose that
Yα ⊆ Yβ for each α ≤ β in A. The union Y :=

⋃
α∈A is connected and contains Z. Indeed, if U

and V are disjoint open subsets of Y whose union is Y , then Yα ⊆ U or Yα ⊆ V for each α ∈ A.
Let α ∈ A and suppose without loss of generality that Yα ∈ U . As U and V are disjoint, as U and
V are disjoint. It follows that Y ⊆ U . This shows that the union Y is connected. Zorn’s lemma
now implies that the set of connected subspaces of X containing Z admits maximal elements
with respect to inclusion. Such maximal elements are connected components, so Z is contained
in a connected component. For the second assertion, note that each x ∈ X is contained in the
connected subspace {x}.
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Hausdorff spaces

Definition 1.3.14. The topological space X is Hausdorff if, for each x, y ∈ X such that x 6= y,
there exist open neighborhoods x ∈ U ⊆ X and y ∈ V ⊆ X such that U ∩ V = ∅.

Example 1.3.15. Rn, R1 with doubled origin

Remark 1.3.16. As illustrated by the real line with doubled origin, limits are not well defined
in non-Hausdorff spaces, so there is little hope of transporting the fundamental concepts of
calculus to such spaces.

Proposition 1.3.17. Let X be a topological space and let

∆ := {(x, x) ∈ X ×X | x ∈ X} ⊆ X ×X

denote the diagonal. The subset ∆ ⊆ X ×X is closed with respect to the product topology if and
only if X is Hausdorff.

Proof. The subset ∆ ⊆ X ×X is closed if and only if the complement

X ×X −∆ = {(x, y) ∈ X ×X | x 6= y}

is open. By the proof of Proposition 1.2.1, X ×X −∆ is open if and only if it is a union of sets
of the form of the form U × V with U, V ⊆ X open. It remains to observe that, if W,W ′ ⊆ X
are subsets, then W ∩W ′ = ∅ if and only if W ×W ′ ⊆ X ×X −∆. Indeed, x ∈W ∩W ′ if and
only if (x, x) ∈W ×W ′.

Proposition 1.3.18. If X is a Hausdorff space and x ∈ X, then {x} ⊆ X is closed.

Proof. If X is Hausdorff, then each y ∈ X − {x} belongs to an open subset Uy such that x 6∈ Uy.
It follows that X − {x} =

⋃
y∈X−{x} Uy is open.

Proposition 1.3.19. If X is a Hausdorff space and Y ⊆ X is a subspace, then Y is Hausdorff.

Proof. Let x, y ∈ Y . Choose disjoint open neighborhoods x ∈ U ⊆ X and y ∈ V ⊆ X. The
subsets U ∩ Y and V ∩ Y are open in the subspace topology, disjoint, and contain x and y,
respectively.

Proposition 1.3.20. Let X and Y be Hausdorff spaces. The product X × Y is Hausdorff.

Proof. Let (x, y) and (x′, y′) be distinct points of X × Y . If x = x′, then choose disjoint open
neighborhoods y ∈ V and y′ ∈ V ′ in Y . The subsets X × V and X × V ′ are disjoint open
neighborhoods in X × Y . If x 6= x′, then choose disjoint open neighborhoods x ∈ U and x′ ∈ U ′
in X. The subsets U × Y and U ′ × Y ′ are disjoint open neighborhoods in X × Y .

Quasi-compact spaces

Definition 1.3.21. Let X be a topological space. An open cover {Ui}i∈I of X consists of a
family of open subsets Ui ⊆ X indexed by a set I such that X =

⋃
i∈I Ui.

Example 1.3.22. Let n ∈ Z≥0 and ε ∈ R>0. The set of open disks of the form D(x, ε) ⊆ Rn

with x ∈ Qn is an open cover. Indeed, each element of this set is open by definition, and Qn is
dense in Rn, so each y ∈ Rn belongs to at least one of these open sets.

Definition 1.3.23. A topological space X is quasi-compact if, for each open cover {Ui}i∈I of
X, there exists a finite subset J ⊆ I such that {Uj}j∈J is an open cover of X.
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Example 1.3.24. Consider the open cover {Uk}k∈Z of R such that Uk is the interval (k−1, k+1)
of radius 1 centered at the integer k. A finite subset of {Uk}k∈Z consisting of N elements of this
set will cover a length of magnitude less than 2N , and is therefore not a cover. This shows that
R is not quasi-compact with respect to the Euclidean topology.

Lemma 1.3.25. Let X be a topological space and let K,K ′ ⊆ X be quasi-compact subspaces.
The union K ∪K ′ is quasi-compact.

Proof. Let {Ui}i∈I be an open cover of K ∪K ′. As K and L are quasi-compact and contained
in
⋃
i∈I Ui, we can find finite subcovers {Uj}j∈J and {Uj′}j′∈J ′ of K and K ′, respectively. The

union {Uj}j∈J ∪ {Uj′}j′∈J ′ is a finite subcover of K ∪K ′.

Proposition 1.3.26. For each a, b ∈ R, the subspace [a, b] ⊆ R is quasi-compact.

Proof. If b < a, then [a, b] = ∅ is quasi-compact: the empty subcover ∅ is a finite subcover. If
a = b, then [a, b] = {a} is quasi-compact: a ∈ Ui for some i ∈ I, in which case {Ui} is a finite
subcover. We may therefore assume without loss of generality that a < b.

Let {Ui}i∈I be an open cover of J0 := [a, b]. Suppose for contradiction that {Ui}i∈I does not
admit a finite subcover. If a′ = (a+ b)/2 is the midpoint, then {Ui}i∈I does not admit a finite
subcover over at least one of the subintervals [a, a′] and [a′, b]. Denote this non-quasi-compact
sub-interval by J1. Repeat this process, inductively subdividing Jk into two halves for each
k ∈ Z≥0, each of which will be of length (b − a)/2k, and choose a one Jk+1 among them over
which our cover admits no finite subcover. For each k ∈ Z≥0, let xk ∈ Jk. The sequence (xk)k≥0
is a Cauchy with a limit x = limk→∞ xk. This limit must belong to J∞ :=

⋂
k≥0 Jk. Choose i0 ∈ I

such that x ∈ Ui0 . As Ui0 is open, there exists ε ∈ R>0 such that D(x, ε) ⊆ Ui0 . For sufficiently
large k, Jk ⊆ D(x, ε) ⊆ Ui0 . This contradicts our hypothesis that the open cover admits no finite
subcover over each Tk.

Proposition 1.3.27. If K is a quasi-compact space and Z ⊆ K is a closed subspace, then Z is
quasi-compact.

Proof. Let {Ui}i∈I be an open cover of Z. By definition of the subspace topology, for each i ∈ I,
there exists an open set Vi ⊆ K such that Vi ∩ Z = Ui. The complement K − Z is open by
hypothesis. The family {K − Z} ∪ {Vi}i∈I is an open cover of K. By quasi-compactness, this
open cover admits a finite subcover, which must be of the form {K − Z, Vi1 , . . . , Vin} for some
i1, . . . , in ∈ I. This finite subcover contains only finitely many of the Vi. By construction, it
follows that {Ui1 , . . . , Uin} is an open cover of Z.

Proposition 1.3.28. Let f : X → Y be a continuous map of topological spaces. If X is quasi-
compact, then f(X) is quasi-compact.

Proof. The map f factors uniquely through a surjective, continuous map X → f(X), so we may
assume without loss of generality that f(X) = Y . Let {Ui}i∈I be an open cover of Y . The family
{f−1(Ui)}i∈I is an open cover of X. As X is quasi-compact, there exists a finite subset J ⊆ I
such that {f−1(Uj)}j∈J covers X. We claim that {Uj}j∈J is an open cover of Y . Let y ∈ Y . By
surjectivity of f , there exists x ∈ X such that f(x) = y. The element x belongs to f−1(Uj) for
some j ∈ J , so y = f(x) ∈ f(f−1(Uj)) ⊆ Uj .

Corollary 1.3.29. If X is a quasi-compact topological space and R is an equivalence relation
on X, then the quotient space X/R is quasi-compact.

Proof. By Proposition 1.2.6, the quotient map p : X → X/R is surjective, so this is a special
case of Proposition 1.3.28.
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Proposition 1.3.30. Let X and Y be quasi-compact topological spaces. The product X × Y is
quasi-compact.

Proposition 1.3.31. If X is a Hausdorff space and K ⊆ X is a quasi-compact subspace, then
K is closed in X.

Proof. Suppose for contradiction that K is not closed in X. By Proposition 1.1.25, there exists
a limit point x of K contained in X − K. For each y ∈ K, use the Hausdorff hypothesis to
choose disjoint open neighborhoods x ∈ Uy and y ∈ Vy. We have an open cover K ⊆

⋃
y∈K Vy. By

quasi-compactness, we may choose a finite subcover {Vy1 , . . . , Vyn}. Observe that Uy1 ∩ · · · ∩ Uyn

is an open neighborhood of x in K disjoint from K ∩ (Uy1 ∪ · · · ∪ Uyn) = K, which contradicts
the hypothesis that x is a limit point of K.

Definition 1.3.32. Let n ∈ Z≥0 and let X ⊆ Rn. We say that X is bounded if there exists
r ∈ R>0 such that |x− y| ≤ r for each x, y ∈ X.

Theorem 1.3.33 (Heine-Borel). Let n ∈ Z≥0. A subspace K ⊆ Rn is quasi-compact if and only
if K is closed and bounded in Rn.

Proof. Suppose that K is quasi-compact. By Proposition 1.3.31, K is closed in Rn. We claim that
K is also bounded. Let x ∈ K. For each r ∈ Z>0, let Ur := D(x, r) denote the open disk of radius
r centered at x. The family {Ur}r≥0 is an open cover of K. By quasi-compactness, there is a finite
subcover {Ur1 , . . . , Urn}. If r denotes the supremum of r1, . . . , rn, then K ⊆ Ur1 ∪ · · · ∪Urn ⊆ Ur.
Thus, |x− y| < 2r for each x, y ∈ K.

Conversely, suppose that K is closed and bounded. Boundedness implies that K is contained
in a product [a, b]n for suitable values of a, b ∈ R. By Proposition 1.3.30 and Proposition 1.3.26,
[a, b]n is quasi-compact. By Proposition 1.3.27, it follows that K is quasi-compact.

Example 1.3.34. Let n ∈ Z≥0. The function x 7→ |x| : Rn+1 → R is continuous, so the unit
n-sphere Sn ⊆ Rn+1 is closed: it is the preimage of the closed subset {1} ⊆ R under a continuous
map. It is also bounded by definition. By Theorem 1.3.33, Sn is therefore quasi-compact.

Alternatively, the space [−1, 1] is quasi-compact by Proposition 1.3.26; the finite product
[−1, 1]n+1 ⊆ Rn+1 is therefore also quasi-compact by Proposition 1.3.30; and Sn is quasi-compact
as a closed subspace of the quasi-compact space [−1, 1]n+1 by Proposition 1.3.27.

Example 1.3.35. The space CPn is quasi-compact for each n ∈ Z≥0. The subspace S2n+1 ⊆
Cn+1 − {0} is quasi-compact by Example 1.3.34, and its image under the quotient map Cn+1 −
{0} → CPn is CPn, so the claim follows from Proposition 1.3.28.

Theorem 1.3.36 (Cantor). Let X be a topological space and let · · · ⊆ K2 ⊆ K1 ⊆ K0 ⊆ X be a
nested sequence of nonempty, closed, quasi-compact subsets. The intersection K∞ :=

⋂
n∈Z≥0

Kn

is nonempty.

Proof. For each n ∈ Z>0, let Un := K0 −Kn. Intersections of closed subsets are closed, so Un is
open in K0 for each n. As the Kn are nested, so are their complements: U1 ⊆ U2 ⊆ · · · . Suppose
that K∞ = ∅ or, equivalently, that {Un}n>0 is an open cover of K0. It suffices to deduce that
KN = ∅ for some N ∈ Z>0 or, equivalently, that UN = K0. As K0 is quasi-compact, there is a
finite subcover. As the Un are nested, there exists N ∈ Z>0 such that UN = K0: take N to be
the supremum of the indices of the elements of the finite subcover.

1.4 Topological groups

Definition 1.4.1. A topological monoid (M,µ) consists of a topological space M equipped with
a continuous map µ : M ×M →M with respect to the product topology on the domain, such
that M is a monoid with respect to the binary operation (x, y) 7→ x · y := µ(x, y), i.e., µ is
associative and unital.
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Example 1.4.2. Consider the set M := Mn×n(C) of n× n matrices with complex entries. With
respect to matrix multiplication, M is a monoid. Identify M with Cn2 and equip it with the
Euclidean topology. To see that matrix multiplication is continuous with respect to this topology,
observe that the entries of the product of two matrices are polynomial expressions in the entries
of the matrices being multiplied, and polynomial maps are continuous.

Definition 1.4.3. A topological group (G,µ, ι) consists of a topological monoid (G,µ) whose
underlying monoid is a group, equipped with a continuous map ι : G→ G such that ι(g) = g−1

for each g ∈ G.

Example 1.4.4. Consider the set G := GLn(C) of invertible n × n matrices with complex
entries. With respect to matrix multiplication, G is a group. With the notation of Example 1.4.2,
equip G ⊆ M with the subspace topology. The inclusion is a morphism of monoids, so the
multiplication map µ : G×G→ G is continuous. The inversion map ι : g 7→ g−1 : G→ G is given
by polynomial expressions in the entries of the input matrix divided by the determinant, which
is a nonvanishing polynomial expression in the entries of the input matrix. The inversion map is
therefore continuous.

Definition 1.4.5. Let G be a topological group and X a topological space. A continuous action
of G on X is a continuous map ρ : G×X → X with respect to the product topology such that ρ
is an action of the group underlying G on the set underlying X, i.e., such that ρ is associative
and unital.

Example 1.4.6. Each topological monoid M acts continuously on itself via the multiplication
map µ : M ×M →M .

Example 1.4.7. The topological monoid Mn×n(C) acts continuously on Cn if we identify
elements of Cn with column vectors and let elements of Mn×n(C) act by matrix multiplication.
Indeed, the action map Mn×n(C)×Cn → Cn is again given by polynomial expressions in the
entries of the inputs, and is therefore continuous.

Example 1.4.8. By restriction of the action map of Example 1.4.7, we obtain a continuous
action of GLn(C) on Cn.

Moreover, left multiplication by elements of GLn(C) sends the subspace Cn − {0} to itself,
as invertible matrices have trivial kernels. We therefore also have a continuous group action of
GLn(C) on Cn − {0} for each n > 0.

We may furthermore identify C∗ = GL1(C) with the subspace of GLn(C) spanned by the
nonzero multiples of the identity matrix. This subspace is a topological subgroup, and we deduce
a continuous group action of C∗ on Cn − {0} for each n > 0.

Definition 1.4.9. Let G be a topological group, let X be a topological space, and let ρ : G×X →
X be a continuous group action. The orbits Gx := {ρ(g, x) ∈ X | g ∈ G} ⊆ X for x ∈ X are the
equivalence classes for an equivalence relation on X. The quotient of X by G is the quotient of
X by this equivalence relation, equipped with the quotient topology. In particular, it admits a
continuous surjection π : X → X/G.

Example 1.4.10. Let n ∈ Z≥0. By Example 1.4.8, the topological group C∗ acts on Cn+1−{0}.
Two points z, w ∈ Cn+1 − {0} belong to the same orbit for this action if and only if they are
equivalent with respect to the relation used to define CPn (Example 1.2.9). It follows that CPn

is equal to the quotient of Cn+1 − {0} by the action of C∗.

Lemma 1.4.11. Let G be a topological group, X a topological space, and ρ : G × X → X a
continuous group action. For each g ∈ G and each open subset U ⊆ X, the subset gU := {λ(g, x) |
x ∈ X} ⊆ X is open.

14



Proof. For each g ∈ G, the composite

ρg : X ' {g} ×X ↪→ G×X ρ−→ X

is continuous. The definition of a topological group implies that this composite is a homeomorphism
with continuous inverse ρg−1 . The claim follows, as gU is the image of U under the homeomorphism
ρg.

Proposition 1.4.12. Let G be a topological group, X a topological space, and ρ : G×X → X a
continuous group action. The quotient map π : X → X/G is an open map.

Proof. Let U ⊆ X be open. We claim that π(U) is open in X/G. By definition of the quotient
topology, π(U) is open if and only if π−1(π(U)) is open. We have

π−1(π(U)) = {x ∈ X | π(x) ∈ π(U)} = {x ∈ X | ∃y ∈ U [(x, y) ∈ R]} =
⋃
g∈G

gU,

where R is the equivalence relation of Definition 1.4.9. By Lemma 1.4.11, the last expression is a
union of open subsets gU , hence open.

Proposition 1.4.13. The space CPn is Hausdorff for each n ∈ Z≥0.

Proof. By Proposition 1.3.17, it suffices to show that the diagonal ∆ ⊆ CPn ×CPn is closed
with respect to the product topology or, equivalently, that its complement is open. Consider the
map

(z, w) 7→
∑

0≤k 6=`≤n+1
|zkw` − z`wk|2 : (Cn+1 − {0})× (Cn+1 − {0})→ R.

This is a continuous map.
For each z, z′, w, w′ ∈ Cn+1 − {0}, if z ∼ z′ and w ∼ w′, then f(z, w) = f(z′, w′), where ∼ is

the equivalence relation used to define CPn (Example 1.2.9). It follows that f factors uniquely
as a composite of the form

(Cn+1 − {0})× (Cn+1 − {0}) π×π−−−→ CPn ×CPn f̄−→ R,

where π : Cn+1 − {0} → CPn is the quotient map and f̄ is continuous.
For each z, w ∈ Cn+1 − {0}, if f(z, w) = 0, then, for each 0 ≤ k 6= ` ≤ n + 1, we have

zkw` = z`wk. It follows that z and w are collinear, i.e., z and w belong to the same orbit for
the action of C∗ on Cn+1 − {0}. By Example 1.4.10, CPn is the quotient of Cn+1 − {0} by this
action. Combining these observations, the diagonal of CPn is the image of f−1({0}) under π× π.
As π × π is surjective, this is equivalent to the condition that the image of f−1(R − {0}) under
π× π be equal to the complement of the diagonal. As R− {0} ⊆ R is open, and f is continuous,
it suffices to show that π × π is open. By Proposition 1.4.12, the quotient map π is open. It
therefore follows from the proof of Proposition 1.2.1 that π × π is also open.

1.5 Proper maps

Definition 1.5.1. Let f : X → Y be a function between topological spaces. We say that f is
proper if, for each quasi-compact K ⊆ Y , the preimage f−1(K) ⊆ X is also quasi-compact.

Example 1.5.2. A topological space X is quasi-compact if and only if the unique map X → ∗
is proper.

Example 1.5.3. The quotient map R → R/Z ' S1 is not proper. Indeed, S1 is quasi-compact
by [add reference], while its preimage R is not by [add reference].
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Example 1.5.4. If X is a topological space and j : U ↪→ X is the inclusion of an open subspace,
then j will in general not be proper. Indeed, j−1(K) = U ∩K need not be quasi-compact for a
general quasi-compact subspace K ⊆ X.

Example 1.5.5. For each topological space X, idX is proper.

Example 1.5.6. If f : X → Y and g : Y → Z are proper maps, then g ◦ f : X → Z is proper.

Exercise 1.5.7. Let f : X → Y be a proper, continuous map and let V ⊆ Y be an open subspace.
The map f : f−1(V )→ V is proper.

Definition 1.5.8. Let X be a topological space. We say that X is compactly generated if, for
each subset S ⊆ X, S is closed if and only if, for each quasi-compact K ⊆ X, S ∩K is closed in
K.

Proposition 1.5.9. Each locally Euclidean topological space X is compactly generated.

Proof. Let S ⊆ X be a subset such that S ∩K is closed for each quasi-compact subspace K ⊆ X.
We claim that each x ∈ X − S admits an open neighborhood contained in X − S. Choose an
open neighborhood U of x equipped with a homeomorphism ϕ : U → V with V an open subset
of Rn for some n ∈ Z≥0. There exists a closed disk D := D̄(ϕ(x), r) of radius r ∈ R>0 such that
D̄(ϕ(x), r) ⊆ V . By [add reference], D is quasi-compact. It follows that K := ϕ−1(D) ⊆ U is a
quasi-compact neighborhood of x. Let x ∈ V ⊆ X be open such that V ⊆ K. By hypothesis,
K − S is open in K, and U := V ∩ (K − S) is therefore open in V ∩K = V and, hence, in X.
This subset U is the required open neighborhood of x.

Proposition 1.5.10. Let f : X → Y be a continuous map of topological spaces.
(1) If f is closed with quasi-compact fibers, then f is proper.
(2) If f is proper and Y is compactly generated and Hausdorff, then f is closed.
(3) If X is quasi-compact and Y is Hausdorff, then f is closed and proper.

Proof. Consider Claim (1). Let K ⊆ Y be quasi-compact and let U = {Uα}α∈A be an open
cover of f−1(K). We seek a finite subcover. For each k ∈ K, U is an open cover of f−1(k).
By hypothesis, f−1(k) is quasi-compact, so we may choose a finite subcover corresponding
to a finite subset Ak ⊆ A. As f is closed, f

(
X −

⋃
α∈Ak

Uα
)
is closed in Y or, equivalently,

Vk := Y − f
(
X −

⋃
α∈Ak

Uα
)
is open in Y . By construction, k ∈ Vk for each k ∈ K, so {Vk}k∈K

is an open cover of K. As K is quasi-compact, there exists a finite subcover {Vkr}1≤r≤n. Thus,
{f−1(Vkr )}1≤r≤n is an open cover of f−1(K). For each 1 ≤ r ≤ n, f−1(Vk) ⊆

⋃
α∈Akr

Uα, so
{Uα}α∈⋃1≤r≤n

Akr
is the desired finite subcover.

Consider Claim (2). Let Z ⊆ X be closed and let K ⊆ Y be quasi-compact. As Y is compactly
generated, it suffices to show that K ∩ f(Z) is closed in K. By hypothesis, f−1(K) is quasi-
compact. By [add reference], it follows that f−1(K) ∩ Z is quasi-compact. By [add reference],
f(f−1(K) ∩ Z) = K ∩ f(Z) is quasi-compact. As Y is Hausdorff, K ∩ f(Z) is closed in K by
[add reference].

Consider Claim (3). Let Z ⊆ X be closed. By [add reference], it follows that Z is quasi-
compact. By [add reference], f(Z) is therefore quasi-compact. As Y is Hausdorff, this implies
that f(Z) is closed by [add reference].

Let K ⊆ Y be quasi-compact. As Y is Hausdorff, this implies that K is closed by [add
reference]. By continuity of f , f−1(K) is therefore closed. By [add reference], f−1(K) is quasi-
compact.
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