TOPOLOGY OF ALGEBRAIC VARIETIES EXERCISE SHEET 1

Definition. Let X be a topological space, $Y \subseteq X$ a subset, and $x \in X$. We say that x is an accumulation point of Y in X if, for each neighborhood V of x, we have $(Y \cap V) - \{x\} \neq \emptyset$.

Exercise 1.1. Give an example of a holomorphic function $f: \mathbb{C}^2 \to \mathbb{C}$ and a subset $X \subseteq \mathbb{C}^2$ with an accumulation point x such that $f|_X = 0$ while f is not identically zero, or prove that no such function exists.

Exercise 1.2. Give an example of a nonconstant, holomorphic map $f: \mathbb{C}^2 \to \mathbb{C}^2$ that is not an open mapping, or prove that no such map exists.

Definition. Let $X \subseteq \mathbb{C}^n$. An *analytic disk in* X is a nonconstant analytic map $f: \mathbb{D}(0, 1) \to X$, where $\mathbb{D}(0, 1)$ is the open disk of radius 1 centered at the origin in \mathbb{C} .

Exercise 1.3. The unit sphere $\mathbf{S}^{2n-1} \subseteq \mathbf{C}^n$ contains no analytic disks.

Definition. Let $r \in \mathbb{Z}_{>0}$. A function $f: \mathbb{C}^n \to \mathbb{C}$ is homogeneous of degree r if

$$f(\lambda z) = \lambda^r f(z)$$

for each $\lambda \in \mathbf{C}$ and each $z \in \mathbf{C}^n$.

Exercise 1.4. Let $r \in \mathbb{Z}_{>0}$, let $f: \mathbb{C}^n \to \mathbb{C}$ be a holomorphic function, and prove Euler's identity

$$rf(a) = \sum_{k=1}^{n} a_k \frac{\partial f}{\partial z_k}(a)$$

for each $a \in \mathbf{C}^n$.

Exercise 1.5 (Riemann extension theorem). Let $U \subseteq \mathbb{C}^n$ be a connected, open subset, let $g: U \to \mathbb{C}$ be a nonconstant holomorphic function, let $Z := g^{-1}(0) \subseteq \mathbb{C}^n$ be the vanishing locus of g, and let $f: U - Z \to \mathbb{C}$ be a holomorphic function. Show that there exists a unique holomorphic function $F: U \to \mathbb{C}$ such that $F|_{U-Z} = f$.

Exercise 1.6. Let X be a Hausdorff topological space, let \sim be an equivalence relation on X, and suppose that the quotient map $\pi: X \to X/\sim$ is an open mapping with respect to the quotient topology. Show that X/\sim is Hausdorff if and only if the set

$$\{(x,y) \in X \times X \mid x \sim y\}$$

is closed in $X \times X$.

Exercise 1.7. Let G be a topological group, X a topological space, and $\mu: G \times X \to X$ a continuous action. Define an equivalence relation on X by $x \sim y$ if and only if there exists $g \in G$ such that $g \cdot x = y$ and let $\pi: X \to X/G$ denote the associated quotient map. Show that π is an open map with respect to the quotient topology.

Exercise 1.8. Show that \mathbb{CP}^n is Hausdorff by considering the map

$$f: (x, y) \mapsto \sum_{k \neq \ell} |x_k y_\ell - x_\ell y_k|^2 \colon (\mathbf{C}^{n+1} - \{0\}) \times (\mathbf{C}^{n+1} - \{0\}) \to \mathbf{R}.$$